

Core Architecture Data Model

All View

Sy
ste

m
s/S

er
vic

es
View

Technical Standards View

Operational View

Volume III: Architecture Data Description
23 April 2007

DoD Architecture Framework
Version 1.5

i

TABLE OF CONTENTS

SECTION PAGE

EXECUTIVE SUMMARY ...VII

1 INTRODUCTION ... 1-1

1.1 Volume III Purpose and Intended Audience.. 1-1
1.2 Overview.. 1-2
1.3 Benefits of a Data-Centric Approach for Architecture Development 1-3

2 ARCHITECTURE DATA MANAGEMENT STRATEGY ... 2-1

2.1 DoD Net-centric Policy and Directives ... 2-2
2.2 Community of Interest (COI)... 2-3
2.3 Metadata... 2-4
2.4 Net-Centric Operating Environment (NCOE) ... 2-5

2.4.1 DoD Metadata Registry ... 2-7
2.4.2 Enterprise Service Registry.. 2-7
2.4.3 Enterprise Catalog.. 2-7

2.5 Visibility, Accessibility, Understandability, and Trust.. 2-7
2.5.1 Visibility .. 2-7
2.5.2 Accessibility... 2-8
2.5.3 Understandability... 2-8
2.5.4 Trust ... 2-8

2.6 Data Quality ... 2-9
2.7 Role of DARS as an Extension of The Enterprise (Metadata) Catalog......................... 2-10
2.8 Role of DARS as an Authoritative Source/Repository for DoDAF Reference Data 2-10
2.9 Role of DARS as an Authoritative Source/Repository for DoDAF Reference

Architectures .. 2-11
2.10 DARS Approach to Realizing NCDS Goals.. 2-11

2.10.1 Visible .. 2-11
2.10.2 Accessible .. 2-11
2.10.3 Understandable and Interoperable ... 2-12
2.10.4 Trusted ... 2-12
2.10.5 Responsive to User Needs ... 2-12

ii

3 ARCHITECTURE METADATA AND FEDERATED ARCHITECTURE REGISTRY
APPROACH .. 3-1

3.1 Concept Summary.. 3-1
3.2 Use Cases ... 3-2

3.2.1 Data Consumer... 3-2
3.2.2 Architecture Search.. 3-2
3.2.3 Registry Browsing ... 3-3
3.2.4 Data Producer... 3-4

3.3 Federation Services.. 3-4
3.3.1 Registration.. 3-4
3.3.2 Discovery ... 3-5
3.3.3 Version Management ... 3-5
3.3.4 Cataloging and Linking.. 3-5
3.3.5 Metadata Elements... 3-6

4 CORE ARCHITECTURE DATA MODEL V1.5 ... 4-1

4.1 Overview.. 4-1
4.2 CADM Design and Maintenance Principles.. 4-1
4.3 Description of the CADM v1.5 Logical Model ... 4-2

4.3.1 The CADM v1.5 Superstructure .. 4-2
4.3.2 The CADM v1.5 Subtype Hierarchies... 4-4

4.4 USE of the CADM v1.5 SUPERSTRUCTURE.. 4-6
4.4.1 Creation of the Physical Schema in a Relational Database 4-6
4.4.2 Data Loading.. 4-8
4.4.3 Versioning.. 4-9
4.4.4 Expressing Relationships in CADM v1.5 – Mapping of Foreign Keys 4-9
4.4.5 Expressing Associative Entities in CADM v1.5.. 4-11
4.4.6 Expressing Double Associative Relationships in CADM v1.5 4-13
4.4.7 Disambiguation of ObjectVersionAssociation Instances in CADM v1.5 4-15

4.5 SUMMARY... 4-18
4.5.1 Mapping Business Rules.. 4-20

4.6 CADM v1.5 Support for DoDAF Products ... 4-20
4.6.1 CADM v1.5 Support for Overview and Summary Information (AV-1) 4-21
4.6.2 CADM v1.5 Support for Integrated Dictionary (AV-2) 4-27
4.6.3 CADM v1.5 Support for High-Level Operational Concept Graphic (OV-1).... 4-31
4.6.4 CADM v1.5 Support for Operational Node Connectivity Description (OV-2). 4-35
4.6.5 CADM v1.5 Support for Operational Information Exchange Matrix (OV-3)... 4-44

iii

4.6.6 CADM v1.5 Support for Organizational Relationships Chart (OV-4) 4-48
4.6.7 CADM v1.5 Support for Operational Activity Model (OV-5) 4-52
4.6.8 CADM v1.5 Support for OV-6 .. 4-58
4.6.9 CADM v1.5 Support for Logical Data Model (OV-7) 4-75
4.6.10 CADM v1.5 Support for Systems Interface Description (SV-1)....................... 4-82
4.6.11 CADM v1.5 Support for Systems Communications Description (SV-2).......... 4-93
4.6.12 CADM v1.5 Support for Systems-System Matrix (SV-3)................................. 4-98
4.6.13 CADM v1.5 Support for Systems Functionality Description (SV-4).............. 4-103
4.6.14 CADM v1.5 Support for Operational-Activity to Systems Function

Traceability Matrix (SV-5) .. 4-108
4.6.15 CADM v1.5 Support for Systems Data Exchange Matrix (SV-6)................... 4-115
4.6.16 CADM v1.5 Support for Systems Performance Parameters Matrix (SV-7).... 4-119
4.6.17 CADM v1.5 Support for Systems Evolution Description (SV-8) 4-125
4.6.18 CADM v1.5 Support for Systems Technology Forecase (SV-9) 4-130
4.6.19 CADM v1.5 Support for SV-10... 4-139
4.6.20 CADM v1.5 Support for Physical Schema (SV-11).. 4-153
4.6.21 CADM v1.5 Support for Technical Standards Profile (TV-1) 4-159
4.6.22 CADM v1.5 Support for TV-2... 4-163

ANNEX A GLOSSARY... A-1

ANNEX B DICTIONARY OF TERMS..B-1

ANNEX C DICTIONARY OF UML TERMS..C-1

ANNEX D REFERENCES... D-1

iv

LIST OF FIGURES

FIGURE PAGE
Figure 2-1 Scope of the Net-Centric Data Strategy ... 2-1
Figure 2-2 DDMS Logical Model.. 2-5
Figure 2-3 NCOE Enterprise Resources .. 2-6
Figure 4-1 High-level Representation of CADM v1.5 .. 4-3
Figure 4-2 The ObjectItem Subtype Hierarchy in CADM v1.5 .. 4-4
Figure 4-3 The ObjectType Subtype Hierarchy in CADM v1.5 ... 4-5
Figure 4-4 A Partial View of the ArchitectureElement Subtype Hierarchy in CADM v1.5 4-6
Figure 4-5 Physical Specification of the CADM v1.5 Superstructure Components 4-7
Figure 4-6 Transformation Stages for RDBMS Use.. 4-8
Figure 4-7 Creation of Records in CADM v1.5 ..4-9
Figure 4-8 Versioning of Records in CADM v1.5 ..4-10
Figure 4-9 Notional Example of Organization associations for an OV-4 type of

Architecture Product .. 4-15
Figure 4-10 Summary Depiction of IDEF1X Notation for Relationships that Result in a

Foreign Key 4-18
Figure 4-11 Summary Depiction of IDEF1X Notation for Relationships that Result in a

Foreign Key.. 4-19
Figure 4-12 Attribute-Level Depiction of Document and Architecture Data Structures in

CADM v1.5 .. 4-21
Figure 4-13 High-Level Depiction of CADM v1.5 Data Structures for AV-1
 Representation .. 4-22
Figure 4-14 Summary Depiction of AV-1 Content ... 4-23
Figure 4-15 High-Level Depiction of CADM v1.5 Data Structures for AV-2
 Representation .. 4-27
Figure 4-16 High-Level Depiction of CADM v1.5 Data Structures for OV-1
 Representation .. 4-32
Figure 4-17 USCENTCOM Deep Operations in the Joint Operations Area Example.............. 4-33
Figure 4-18 High-Level Depiction of CADM v1.5 Data Structures for OV-2 Representation

(Notation Independent Style) ... 4-36
Figure 4-19 High-Level Depiction of CADM v1.5 Data Structures for OV-3
 Representation .. 4-45
Figure 4-20 High-Level Depiction of CADM v1.5 Data Structures for OV-4 Representation

(Notation Neutral) .. 4-48
Figure 4-21 High-Level Depiction of CADM v1.5 Data Structures for OV-5 Representation

(IDEF0 Style) ... 4-53
Figure 4-22 High-Level Depiction of CADM v1.5 Data Structures for OV-6a
 Representation.. 4-59

v

Figure 4-23 High-Level Depiction of CADM v1.5 Data Structures for OV-6b
Representation .. 4-63

Figure 4-24 Operational State Transition Description (OV-6b). Air Traffic Operations
Example.. 4-64

Figure 4-25 High-Level Depiction of CADM v1.5 Data Structures for OV-6c
 Representation.. 4-71
Figure 4-26 High-Level Depiction of CADM v1.5 Data Structures for OV-7 Representation

(IDEF1X Style) .. 4-76
Figure 4-27 Logical Data Model (OV-7) – Template.. 4-78
Figure 4-28 High-Level Depiction of CADM v1.5 Data Structures for SV-1 Representation .4-82
Figure 4-29 High-Level Depiction of CADM v1.5 Data Structures for SV-2 Representation .4-93
Figure 4-30 Systems Communications Description Example ... 4-94
Figure 4-31 High-Level Depiction of CADM v1.5 Data Structures for SV-3 Representation .4-98
Figure 4-32 Notional Example of an SV-3 Product... 4-99
Figure 4-33 High-Level Depiction of CADM v1.5 Data Structures for SV-4
 Representation .. 4-103
Figure 4-34 High-Level Depiction of CADM v1.5 Data Structures for SV-5
 Representation .. 4-109
Figure 4-35 Notional SV-5 Template (Partial View) .. 4-110
Figure 4-36 High-Level Depiction of CADM v1.5 Data Structures for SV-6
 Representation .. 4-116
Figure 4-37 High-Level Depiction of CADM v1.5 Data Structures for SV-7
 Representation .. 4-119
Figure 4-38 Notional SV-7 Template (Partial View) .. 4-120
Figure 4-39 High-Level Depiction of CADM v1.5 Data Structures for SV-8
 Representation .. 4-125
Figure 4-40 Systems Evolution Description Example... 4-126
Figure 4-41 High-Level Depiction of CADM v1.5 Data Structures for SV-9
 Representation .. 4-131
Figure 4-42 High-Level Depiction of CADM v1.5 Data Structures for SV-10a

Representation .. 4-140
Figure 4-43 Notional Example of an SV-10a Product... 4-140
Figure 4-44 High-Level Depiction of CADM v1.5 Data Structures for SV-10b

Representation .. 4-143
Figure 4-45 Notional Example of an SV-10b Product... 4-143
Figure 4-46 High-Level Depiction of CADM v1.5 Data Structures for SV-10c

Representation .. 4-148
Figure 4-47 Notional Example of an SV-10c Product... 4-149
Figure 4-48 High-Level Depiction of CADM v1.5 Data Structures for SV-11
 Representation .. 4-154
Figure 4-49 Notional Example of an SV-10c Product... 4-155

vi

Figure 4-50 High-Level Depiction of CADM v1.5 Data Structures for TV-1
 Representation .. 4-159
Figure 4-51 Notional Example of a TV-1 Product .. 4-160
Figure 4-52 High-Level Depiction of CADM v1.5 Data Structures for TV-2
 Representation .. 4-164
Figure 4-53 Notional Example of a TV-2 Product .. 4-165

LIST OF TABLES

TABLE PAGE
Table 1-1 Organization of Volume III ... 1-2
Table 2-1 DoD Net-Centric Data Goals... 2-3
Table 3-1 Architecture Metadata for Classification, Discovery, and Version Management....... 3-9
Table 4-1 Example of a CADM v1.5 Query Showing Activities, Flows, and Their Roles

for a Notional OV-5 Using IDEF0 .. 4-57
Table 4-2 Example of a CADM v1.5 Query Showing System Functions, Flows, and Their

Roles for a Notional SV-4 as a Data Flow Diagram ... 4-108
Table 4-4 Systems Technology Forecast (SV-9)—Notional Example................................... 4-132

vii

EXECUTIVE SUMMARY

Architectures within the Department of Defense (DoD) are created for a number of reasons.
From a compliance perspective, the DoD’s development of architectures is compelled by law and
policy (i.e., Clinger-Cohen Act, Office of Management and Budget (OMB) Circular A-130).
From a practical perspective, experience has demonstrated that the management of large
organizations employing sophisticated systems and technologies in pursuit of joint missions
demands a structured, repeatable method for evaluating investments and investment alternatives,
implementing organizational change, creating new systems, and deploying new technologies.
Towards this end, the DoD Architecture Framework (DoDAF) was established as a guide for the
development of architectures.

The DoDAF provides the guidance and rules for developing, representing, and understanding
architectures based on a common denominator across DoD, Joint, and multinational boundaries.
It provides insight for external stakeholders into how the DoD develops architectures. The
DoDAF is intended to ensure that architecture descriptions can be compared and related across
programs, mission areas, and ultimately, the enterprise, thus, establishing the foundation for
analyses that supports decision-making processes throughout the DoD.

As the Department takes appropriate strides to ensure advancement of the Information
Technology (IT) environment, it becomes essential for the DoDAF to transform to sufficiently
support new technologies. A significant evolution occurring today is the Department’s
transformation to a new type of information intensive warfare known as Net-Centric Warfare
(NCW). NCW focuses on generating combat power from the effective linking or networking of
the warfighting enterprise, and making essential information available to authenticated,
authorized users when and where they need it. This ability is at the heart of net-Centricity and
essential to achieving Net-Centric Operations (NCO).

DoDAF v1.5 is a transitional version that responds to the DoD’s migration towards NCW. It
applies essential net-centric concepts1 in transforming the DoDAF and acknowledges that the
advances in enabling technologies – such as services within a Service Oriented Architecture
(SOA) – are fundamental to realizing the Department’s Net-Centric Vision2. Version 1.5
addresses the immediate net-centric architecture development needs of the Department while
maintaining backward compatibility with DoDAF v1.0.

In addition to net-centric guidance, DoDAF v1.5 places more emphasis on architecture data,
rather than the products, introduces the concept of federated architectures, and incorporates the
Core Architecture Data Model (CADM) as an integral component of the DoDAF. These aspects

1 Reference DoDAF v1.5 Volume II for further information on the following net-centric concepts and their application to DoDAF: 1) Populate

the Net-Centric Environment , 2) Utilize the Net-Centric Environment , 3) Accommodate the Unanticipated User, 4) Promote the Use of
Communities Of Interest (COI), 5) Support Shared Infrastructure

2 2005 National Defense Strategy

Architecture: the structure of components, their relationships, and the principles and
guidelines governing their design and evolution over time.

DoD Integrated Architecture Panel,
1995, based on IEEE STD 610.12

viii

prepare the way for more efficient and flexible use and reuse of architecture data, enabling
broader utility for decision makers and process3 owners.

The DoDAF is a three-volume set that inclusively covers the concept of the architecture
framework, development of architecture descriptions, and management of architecture data.

• Volume I introduces the DoDAF framework and addresses the development,
use, governance, and maintenance of architecture data.

• Volume II outlines the essential aspects of architecture development and
applies the net-centric concepts to the DoDAF products.

• Volume III introduces the architecture data management strategy and
describes the pre-release CADM v1.5, which includes the data elements and
business rules for the relationships that enable consistent data representation
across architectures.

An Online Journal, hosted on the DoD Architecture Registry System (DARS) website
(https://dars1.army.mil/IER/index.jsp), replaces the DoDAF v1.0 Desk Book and is designed to
capture development best practices, architecture analytical techniques, and showcase exemplar
architectures.

The DoDAF will continue to evolve to meet the growing needs of decision makers in a Net-
Centric Environment (NCE). Going forward, architectures will need to capture the development
of a new generation of net-centric capabilities stemming from operational insights gained in
Afghanistan and Iraq. As the maturation of the Global Information Grid (GIG) continues through
GIG Capability Increments (an incremental timeframe approach to the delivery of GIG-enabling
capabilities), architectures will be a factor in evaluating increment investments, development,
and performance at the mission portfolio levels. As the DoD increases its use of architecture data
for decision making processes, architects will need to understand how to aggregate the data for
presentation purposes at the enterprise level. The DoDAF plays a critical role in the development
of architectures and will continue to improve its support for the increasing uses of architecture
data.

3 Chairman Joint Chiefs of Staff Instruction (CJCSI) 3170.01E, Joint Capabilities Integration and Development System (JCIDS); DoD Directive

7045.14, Planning, Programming, Budgeting, and Execution (PPBE); DoD Directive 5000.1, The Defense Acquisition System (DAS); DoD
Directive 8115.01, Information Technology Portfolio Management (PfM)

1-1

1 INTRODUCTION

1.1 VOLUME III PURPOSE AND INTENDED AUDIENCE
The purpose of this volume is to define, describe, and provide a use for Architecture Data.

This volume is organized with various readers in mind.

a. For the manager who needs to lead architecture development projects and who may need
to use architecture data and products to make acquisition, budgeting, or resourcing
decisions, product definition and purpose subsections are provided in each product
section to:

1) Help these managers to understand the architecture components or
products.

2) Provide an appreciation of the potential level of effort involved in
developing such architectures.

3) Assist them to discern the potential needs or uses of such an architecture
effort.

b. For the architect and engineering team who need to present architecture products to the
high-level decision makers for use in decision support analysis, a detailed description of
the “data layer” as defined in CADM, and a data element table subsection are
provided in each product section to:

1) Enable the architect and engineering team to identify products to be
included in the architecture based on the architecture’s intended use (see
Use Matrix).

2) Determine architecture data needs.
3) Identify sources for the architecture data.
4) Analyze and relate the data gathered.
5) Compose the data into architecture products.

For the architecture data modelers, tool developers, and engineers who are involved with
implementing a data repository to store and manipulate Framework data elements, a CADM
support subsection is provided in each product section.

This document is organized in the following manner:

Section Content

Section 1 Introduction – Provides an overview of the DoDAF and the benefits of
architecture data.

Section 2
Architecture Data Management Strategy – Describes the overall DoD
architecture data management strategy, in particular how it fits and
supports the Department’s Net-Centric Data Strategy (NCDS).

Section 3

Architecture Metadata and Federated Architecture Registry Approach –
Provides a description of architecture metadata, in particular, discovery
metadata and how data can be discovered and accessed using a federated
repository system coupled with a centralized registry system, the DARS.

1-2

Section 4 Core Architecture Data Model v1.5 – Describes architecture product “data
layer” as defined and supported in CADM v1.5.

Table 1-1: Organization of Volume III

1.2 OVERVIEW
The DoDAF, v1.5 provides the guiding principles for modeling and designing architectures

via a set of products that support the DoD environment. The Framework is intended to ensure
that architecture descriptions can be compared and related across organizational boundaries to
support multiple stakeholder perspectives.

An architecture description is a representation of a defined domain, as of a current or future
point in time, in terms of its component parts, how those parts function, the rules and constraints
under which those parts function, and how those parts relate to each other and to the
environment. Within the DoDAF, architectures are described in terms of four views: All View
(AV), Operational View (OV), Systems and Services View (SV), and Technical Standards View
(TV). An architecture description is composed of architecture products that are interrelated
within each view and are interrelated across views. Architecture products are those graphical,
textual, and tabular items that are developed in the course of gathering architecture data,
identifying their composition into related architecture components or composites, and modeling
the relationships among those composites to describe characteristics pertinent to the
architecture’s purpose.

Underlying both the Framework and supporting architecture tools is the goal of a common
specification of the data planned to be incorporated in architecture data repositories and
databases. Such a specification needs to be tool independent, constrained only to the degree
required for exchanging and reusing data underlying architectures developed for the Department.
The CADM provides such a specification.

Architectures are typically developed as a set of products based on an underlying data
structure. Merging the underlying data of these products and the architecture in general into a
database or other kind of data repository enables architecture data to be maintained in a
consistent way and to be reused by other versions of the architecture and by other architects. The
benefits of additionally developing, validating, and maintaining architectures in an agreed-upon
data repository structure include the following:

a. Consistently expressing the commonality of data underlying architecture products and
integrated architectures

b. Enabling the potential for reuse of data underlying all DoD architectures
c. Ensuring consistent data across multiple architectures and architecture products
d. Enabling flexible re-partitioning for different points of view
e. Supporting taxonomies of key reference data
f. Exchanging data among architecture data repositories and multiple modeling and analysis

tools
g. Supporting data maintainability by use of standard import mechanisms from authoritative

data sources

1-3

h. Providing a basis for enterprise-level decision support systems in which architecture data
can be queried and analyzed and reports generated for a variety of decision support
analyses.

Benefits of using the CADM are best realized if architects go beyond the barriers of
proprietary tool formats by using tool templates, data tagging, and export formats aligned with
the CADM. The current breed of architecutre tools are generally methodology dependent, which
often results in archiecture data that are critical for analysis using those methodologies, but is not
readily aligned with the current DoDAF view set or CADM specification. The result is that some
tools and methodologies will be challenged in meeting the objectives of DoDAF and CADM
conformance. This issue is being addressed through DoDAF data modeling work groups. The
primary goal the DoDAF data modeling work groups is to develop modeling guidelines and
profiles for popular methodologies along with view specifications and data structures for the next
version of the DoDAF and CADM that minimize data element alignment issues and better
supports architecture data reuse across different modeling tools and methodologies.

1.3 BENEFITS OF A DATA-CENTRIC APPROACH FOR ARCHITECTURE
DEVELOPMENT

Architecture data is typically collected and represented via graphs (i.e., nodes connected by
edges) and matrices. The benefits of additionally producing, exporting, and validating CADM
conformant data are:

a. Consistency. Developing and expressing products using CADM conformant data ensures
consistency through the use of common data elements and taxonomies. Two types of
product consistency can be achieved:

1) Across Levels of Abstraction within the same product. Architectural descriptions
at a detailed level of abstraction ensure consistent assertions at higher levels of
abstraction through the taxonomic structure of the elements.

2) Across Products. Many architecture products can be specified using some of the
same set of data elements. Product data developed, maintained, and generated in
conformance with the CADM ensure consistency in data elements common to
multiple products.

b. Data re-use and flexible partitioning. Data can be re-used by different teams, perhaps
looking at the architecture from different mission area, functional area, capability, or task
force points of view. The data can be ‘sliced and diced’ in a CADM conformant
repository however needed, but all the data comes from the same CADM conformant
dataset – ‘develop once, use many.’ This provides efficiency, flexibility, and reduces the
need for complex, costly, and sometimes infeasible reconciliations.

c. Inter-agency architecture data interoperability. Interfaces to other architecture data
repositories can be used to assess inter-organizational interoperability, gaps, or
redundancy issues. Inter-organizational interoperability is one of the major reasons for
employing architectural techniques.

d. Ability to use multiple tools and perform adhoc analyses. Commercial off-the-shelf
software (COTS), Government off-the-shelf software (GOTS), and adhoc reports,
diagramming, executable modeling, and other modeling and simulation (M&S) tools can

1-4

be interfaced to the data repository, so architecture developers and users are not restricted
to the functionality of one tool.

e. Interfaces to other enterprise authoritative data sources. The authoritative data source for
much architecture data is actually non-architecture data sources, e.g., the Universal Joint
Task List (UJTL), DoD IT Standards Registry (DISR), IT Systems Registry list,
organizations, occupational specialties, ships, aircraft, facilities, units, costing, and
budget data. Ideally, these would be interfaced to the architecture repository rather than
manually input, parsed, or imported by each architecture developer.

f. Maintainability. ‘Develop once, use many’ and interfaces to authoritative data sources
promote maintainability and validity of CADM conformant data.

g. Rapid Decision Support. The integrated architecture data repository becomes an
enterprise Decision Support System (DSS). The data can be queried and analyzed, and
reports can be generated for decision support from a CADM conformant repository.
Some data may be required to augment the decision aid, but, to the extent architectural
data are involved, pull from the data repository supports faster decision support and
reduces redundant data calls.

h. Integration with Enterprise Taxonomies. Enterprise taxonomies are important
components of enterprise knowledge management, providing a basis for the enterprise
ontologies. Employing consistent taxonomies in the architecture data repository links
knowledge management ontologies with Enterprise Architecture (EA).

Using Architecture Repository Data to Assess a Proposed Architecture. The use of
architecture data in conjunction with M&S, performance analysis, and assessment tools is an
area of expanding interest because of its importance for capabilities-based assessments and
analysis of alternatives.

The potential value to an enterprise of a proposed architecture may not be obvious. Measures
of merit can include cost; performance; interoperability; satisfaction of requirements; manpower
and training; logistics, deployment, and asset allocation; schedule, and many others. The
formulae for computing measures of merit may be quite complicated, as in a complex M&S
program. An important ingredient in these measures is quality input data.

In addition to supporting the data requirements of the DoDAF, the CADM was originally
developed to support the needs of the M&S community for architecture and interoperability
analyses. For example, NETWARS is a GOTS/COTS tool that estimates communications
throughput requirements from Information Exchange Requirements (IERs). NETWARS uses
IER attributes for information element size, frequency, timeliness, security, required format, etc.,
along with operational node to physical node mappings to estimate bandwidth requirements at
physical nodes and predict throughput bottlenecks.

IER attributes, at the operational, functional, and system levels, across time periods or “as-is”
and “to-be,” are not the only architecture data elements that can be used to compute measures.
Task and process-activity staffing levels, technical standards such as communications protocols,
network architectures, scenario information, and performance data, can all be input to M&S and
analysis tools for performance measures computation. The advantage of using CADM structures
for developing and maintaining measures of merit data is that M&S, analysis, and assessment
tools developed or modified to compute the measures based on architecture repository data are

1-5

standardized. This means multiple M&S, analysis, and assessment tools can use the same data
sets (data reuse) and that, over time, these tools can evolve to provide a fuller set of measures
needed for decision support.

2-1

2 ARCHITECTURE DATA MANAGEMENT STRATEGY
The DoD NCDS lays out a new approach for data management that focuses on making data

visible, available, understandable and trusted in a Net-Centric Operating Environment (NCOE).
The strategy applies to all data assets on the GIG, including architecture data. Data assets are
defined to include system or application output files, databases, documents, or web pages. For
the architecture community, data assets include integrated architectures and individual
architecture products produced and stored in architecture tools and data repositories.
Implementation of the NCDS throughout the DoD architecture community will enable
architecture producers and end users to discover, share, understand, and use architecture data and
products created and stored in independent architecting environments across the Department.

This section presents the recommended approach to implementing NCDS for management of
DoDAF architecture data for DoD Commands/Services/Agencies (C/S/A). Key aspects of the
strategy are to 1) make data visible, available and usable, 2) “tag” data with metadata to enable
discovery (see section 2.3), 3) post data to shared spaces, and 4) move away from point-to-point
interfaces to “many-to-many” exchanges within a net-centric data environment. Figure 2-1
shows the scope of the NCDS.

Focus of
Net-Centric
Data
Strategy

Data being “posted” for
other applications and
systems to use

Discovery metadata being
provided to catalog
describing what data
assets are available in
shared space

Structural metadata being
registered in DoD
Metadata Registry to
describe data
structures and definitions

Data
Contents

Structural
Metadata

Discovery
Metadata
Catalog

Focus of Existing Data Administration

System BSystem A

Shared Space

Data being exchanged across
engineered, well- defined interfaces

Queries sent to catalog looking for data assets based on type,
source, security, or content. Systems “pull” data from shared
space based on discovery metadata from catalog and apply based
on registered metadata structure

Other
Systems

Figure 2-1: Scope of the NCDS

In the context of the DoDAF architecting community, the Systems A and B may represent
any architecting tool environment or any system requiring access to architecture data, including

2-2

unanticipated users. Architecture data assets are posted in a virtual shared space (Data Contents)
and accessible to anyone with appropriate access permissions, in formats that are commonly
useable. Data are structured in accordance with structural metadata registered in the DoD
Metadata Registry (DMR) (Structural Metadata) – providing understanding and usability
through definitions of the data elements and content structure. Content metadata is registered in
catalogs (Discovery Metadata Catalog) accessible using enterprise discovery search services.
Users search for architecture content by executing a discovery search in the Discovery Metadata
Catalog (also known as the Enterprise Catalog) and pull content of interest from repositories
forming the content virtual shared space (Data Contents).

2.1 DOD NET-CENTRIC POLICY AND DIRECTIVES
The DoD Chief Information Officer (CIO) has outlined a vision for managing data in the

NCE in the NCDS memorandum [NCDS 2003]. In 2004, DoD issued Department of Defense
Directive (DoDD) 8320.2, “Data Sharing in a net-Centric DoD,” that established policies and
responsibilities for implementing the NCDS throughout the DoD.

The NCDS data management vision is based on three key elements: 1) collaborative groups
of users, called Communities of Interest (COIs), who must exchange information in pursuit of
their shared goals, interests, missions, or business processes, 2) metadata standards (for
describing information about data), and 3) GIG Enterprise Services that enable discovery and
sharing of data.

NCDS identifies seven specific data goals (Table 2-1) by which the strategy will be achieved
– be visible, be accessible, be institutionalized (incorporated into DoD processes and practices),
be understandable, be trusted, be interoperable, and be responsive to user needs.

2-3

Table 2-1 DoD net-nentric Data Goals

Goal Description
Goals to increase Enterprise and community data over private user and system data

Visible
Users and applications can discover the existence of data assets through catalogs,
registries, and other search services. All data assets (intelligence, non-intelligence,
raw, and processed) are advertised or “made visible” by providing metadata, which
describes the asset.

Accessible

Users and applications post data to a “shared space.” Posting data implies that (1)
descriptive information about the asset (metadata) has been provided to a catalog
that is visible to the Enterprise and (2) the data are stored such that users and
applications in the Enterprise can access it. Data Assets are made available to any
user or application except when limited by policy, regulation, or security.

Institutionalize
Data approaches are incorporated into Department processes and practices. The
benefits of Enterprise and community data are recognized throughout the
Department.
Goals to increase use of Enterprise and community data

Understandable
Users and applications can comprehend the data, both structurally and
semantically, and readily determine how the data may be used for their specific
needs.

Trusted
Users and applications can determine and assess the authority of the source,
because the pedigree, security level, and access control level of each data asset is
known and available.

Interoperable
Many-to-many exchanges of data occur between systems, through interfaces that
are sometimes predefined or sometimes anticipated. Metadata are available to
allow mediation or translation of data between interfaces, as needed.

Responsive to
User Needs

Perspectives of users, whether data consumers or data producers, are incorporated
into data approaches via continual feedback to ensure satisfaction.

2.2 COMMUNITY OF INTEREST
The NCDS uses the term COI to describe collaborative groups of users who must exchange

information in pursuit of their shared goals, interests, missions, or business processes and who
therefore must have shared vocabulary for the information they exchange. NCDS relies on COIs
to achieve net-centric data goals by establishing COI agreements on common semantics and
structural metadata, cataloging data and metadata, and having members post data assets and
metadata to a virtual “shared” space.

Each DoD C/S/A can be considered a COI for the purpose of establishing common reference
data (i.e., common sets of terms) for the values of data elements to be used for architecture
description within a C/S/A domain. However, they all share a common interest in developing
DoDAF architectures and, thus, must be considered part of a larger and inclusive DoD
Architecture COI for the purpose of establishing agreements on common semantics and structure
of DoDAF architecture data elements. Office of the Assistant Secretary of Defense/Networks
and Information Integration (OASD/(NII), Architectures and Interoperability Directorate

2-4

(A&ID) has the responsibility to govern this larger and inclusive DoD Architecture COI so that
the NCDS vision can be realized.

The DoD architecture community has been actively engaged in COI activities for over 10
years. For example:

• The Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) Architecture Framework, and later, the DoDAF, was
developed to provide a common understanding of the core data content for various
views of architecture.

• The CADM was developed by the DoD architecting community to provide an
agreement on common structural metadata and semantics for DoDAF architecture
data elements.

• DARS was initially established to provide a community shared space for posting and
searching architecture data and now also serves as the community’s content metadata
registry – integrated with the Net-Centric Enterprise Services (NCES) Enterprise
Catalog via a federated discovery service.

• The EA Summit provides a forum for senior C/S/A CIOs to discuss issues and
coordinate activities for the common benefit of the community.

• The Federated Joint Architecture Working Group (FJAWG) was established to
develop solutions, guidance, and implementation plans for federating and integrating
architectures.

• The DoD Architecture Configuration Control Board (ACCB) was established to
maintain configuration management authority over the DoDAF, CADM, DARS, and
reference taxonomies.

All of these ongoing activities, along with regular community-wide conferences, meetings,
and working groups conducted under the sponsorship of OASD(NII) A&ID, are essential for the
architecture community to carry out the intended role of COIs in achieving the NCDS vision.

2.3 METADATA
The NCDS calls for COIs to establish agreements on semantic and structural metadata

needed to provide an understanding of the content of COI data assets. Metadata is descriptive
information about the meaning of other data or data processing services (e.g., web services). For
architecture data assets, metadata are used to provide information about the content of an
integrated architecture, individual architecture products, or about the use of data processing and
analysis web services. Extensible Markup Language (XML) provides a means of identifying data
asset metadata elements in the form of a structured XML document using name tags for each
element.

NCDS requires COIs to tag all COI data assets with discovery metadata conforming to the
DoD Discovery Metadata Specification (DDMS) to document information about the content of
the data assets. NCDS also calls for discovery metadata to either be posted to searchable
community metadata catalogs (DARS for DoDAF architectures) or produced in the form of a
DDMS-conformant XML document in response to a discovery search request from the NCES
discovery service. Archiecture metadata can be manually posted to DARS to provide visibility
via NCES or DARS discovery services. Alternarively, the implication of the later option is that

2-5

GOTS and COTS tools must implement either the NCES or DARS federated search web service
to provide visibility by implementing automated discovery services. The ability to discover all
DoDAF architecture content throughout DoD via a federated search is a core element of the
Department’s Architecture Data Management Strategy.

NCDS discovery metadata standards are provided in the DDMS. DDMS defines metadata
elements to be associated with data assets posted to shared spaces so that they can be discovered
via DDMS-conformant search services. DDMS combines a Core Layer and an Extensible Layer.
The Core Layer consists of four sets of element categories, each targeted to a specific functional
area. The Extensible Layer supports unique COI metadata requirements by extending the Core
Layer element categories and is used by the DoD architecture COI to record discovery metadata
elements unique to the DoD architecture community.

+

COI/Domain Specific
Descriptors

Provides ability to define
mission-specific metadata

elements

Can extend any of the core
layers as needed.

Extensible Layer

Security Descriptors

Summary Content Descriptors

Format Descriptors

Resource Descriptors

Core Layer

+

COI/Domain Specific
Categories

Provides ability to define
mission-specific metadata

elements

Can extend any of the core
sets, as needed

Extensible Layer

Security Descriptors

Summary Content Descriptors

Format Descriptors

Resource Descriptors

Security Category Set

Summary Content Category Set

Format Category Set

Resource Category Set

Core Layer

Figure 2-2: DDMS Logical Model

A set of DDMS extension metadata elements is defined in Section 3 to support the unique
requirements of the DoDAF architecture community. The initial extension set was developed by
FJAWG and is being configuration managed by the DoD ACCB. The discovery metadata
extension set is based on the descriptive content elements of the AV-1 and serves several
purposes. It enables searching and filtering architecture content based on the values of AV-1
metadata elements. The metadata elements also enable EA federation by linking architectures to
elements of the DoD Business Reference Model (BRM) as a means of classifying architectures
and building a DoD EA navigation map in DARS. Architecture federation and linking are further
described in Section 3.

2.4 NET-CENTRIC OPERATING ENVIRONMENT (NCOE)
The NCOE is the environment that enables the NCDS and Architecture Data Management

Strategy. It consists of the set of NCES Core Enterprise Services (CES), GIG infrastructure, and
all other services available to users on the GIG. NCOE resources directly supporting the

2-6

Architecture Data Management Strategy include the DMR, the Enterprise Service Registry, the
Enterprise Catalog, and the NCES Federated Search and Security CES. Figure 2-3 depicts how
NCOE enterprise resources support the Architecture Data Management Strategy.

Architecture
Producers

Architecture
Consumers

Publish
Content

Register
Metadata

DoD Service
Registry

DoD Metadata
Registry

DARS

EA Content + Metadata
Structured + Unstructured

Enterprise Catalog

Common Framework, Vocabulary, Discovery,
Exchange [DoDAF/CADM/DARS]

Content
+

Metadata
Content

+
Metadata
Content

+
Metadata

Requirements

Content Pull

Navigate & Search
ContentCADM

XML

DDMS
XML

EA Analysis and Decisions

Architecting
Tools &

Repositories

Content Pull

Structural Metadata
Service Metadata

EA Navigation
via

Linked Content

Publish COI
Structural

and
Semantic
Metadata

Publish COI
EA Service
Metadata

Content Metadata

Net-Centric Operating Environment

Architecture
Producers

Architecture
Consumers

Publish
Content

Register
Metadata

DoD Service
Registry

DoD Metadata
Registry

DARS

EA Content + Metadata
Structured + Unstructured

Enterprise Catalog

Common Framework, Vocabulary, Discovery,
Exchange [DoDAF/CADM/DARS]

Content
+

Metadata

Content
+

Metadata
Content

+
Metadata

Content
+

Metadata
Content

+
Metadata

Requirements

Content Pull

Navigate & Search
Content

Navigate & Search
ContentCADM

XML

DDMS
XML

EA Analysis and DecisionsEA Analysis and Decisions

Architecting
Tools &

Repositories

Content Pull

Structural Metadata
Service Metadata

EA Navigation
via

Linked Content

Publish COI
Structural

and
Semantic
Metadata

Publish COI
EA Service
Metadata

Content MetadataContent Metadata

Net-Centric Operating Environment

Figure 2-3: NCOE Enterprise Resources

Enterprise web services include the CES and other web services made available for general
use by DoD by publishing the services’ metadata to the Enterprise Service Registry, where it can
be discovered and executed, and where it is subject to security and policy constraints. A Web

2-7

Service is defined by the World Wide Web Consortium (W3C) as a software system designed to
support interoperable machine-to-machine interaction over a network. Web services are modular
application components built in conformance with a set of XML standards that enable
applications to access the services of other applications via a standard set of communications
protocols – independent of the application implementation environment. Enterprise web services
include the CES and other web services made available by publishing the services’ metadata to
the Enterprise Service Registry, where it can be discovered.

The CES provide the foundational web services for achieving the goals of the NCDS. The
architecture community will provide EA web services of interest to architects and architecture
end-users across DoD. EA services include services for architecture data management, quality
assessment, and analysis developed by OASD(NII) and C/S/A components of the architecture
community. EA services designed and implemented to achieve the goals of the architecture data
management strategy will be integrated with the CES.

2.4.1 DoD Metadata Registry
The DMR provides access to structural and semantic metadata describing architecture.

OASD(NII) Architectures and Interoperability (A&I) has registered the CADM and CADM
XML schema as the semantic and structural specifications for DoDAF architecture data
elements. The DoD architecture community has also registered a set of DDMS extension
metadata elements that are available for reference. Potential users of architecture data can access
CADM and DDMS specifications in the DMR to understand the structure and meaning of
architecture products and metadata made available throughout the community in the form of
CADM XML or DDMS XML documents. The DMR can be accessed at:

https://metadata.dod.mil/mdrPortal/appmanager/mdr/mdr

2.4.2 Enterprise Service Registry
The Enterprise Service Registry is the component of the NCOE, where web service metadata

is registered to enable service discovery and use. EA services developed by OASD(NII) and
C/S/A components will be registered in the Enterprise Service Registry, as they are developed by
the community.

2.4.3 Enterprise Catalog
The Enterprise Catalog is a virtual catalog of all DoD data assets. It supports the NCDS by

enabling searches on DDMS and COI-extension metadata registered in federated metadata
registries. It functions as a federated catalog of DoD data assets via a federated search web
service – providing the ability to search content metadata throughout the federation.

DARS metadata registration and federated discovery services provide the architecture
community’s extension to the Enterprise Catalog. It enables searching for architecture content
based on DDMS metadata elements. A detailed description of architecture metadata and the
DARS federated search is provided in Section 3.

2.5 VISIBILITY, ACCESSIBILITY, UNDERSTANDABILITY, AND TRUST
2.5.1 Visibility

Architecture data producers should make their data visible to all potential consumers either
by posting architecture products and content metadata to the DARS shared space or by
implementing the DARS federation web services in local data repositories. The DARS federated

2-8

search service provides visibility by enabling discovery of architecture content in all architecture
repositories implementing the federated search service. Acquisition program managers (PMs)
and C/S/A Chief Architects should ensure that procedures are implemented to make all
architecture content visible as soon as development begins.

For DoDAF architectures, within security and policy constraints of the component, visibility
should be provided as soon as the scope of the architecture and all mandatory DDMS data
elements can be specified, regardless of the state of development, maturity, or approval. DDMS
extension metadata elements for the architecture community should be used to identify the
completion and approval status, so that potential users can assess suitability for use. Mechanisms
for enabling visibility, and maintaining currency and relevance of discovery metadata, are
detailed in Section 3. Acquisition PMs and C/S/A Chief Architects should ensure that procedures
are implemented to make all architecture data visible.

2.5.2 Accessibility
Accessibility is provided when users and applications can both: 1) discover architecture

content by browsing or searching publicly accessible metadata registries conforming to the
DDMS, and 2) access data in commonly understood formats using standard protocols – subject
to policy and security restrictions. For the DoDAF architecture community, architecture products
can be made accessible by registering content metadata in DARS or a DARS federated content
provider and providing users and applications a role-restricted capability to extract data and
product files in common tool formats and as CADM XML. Role restriction implies that
information assurance procedures are followed for providing role-based access based on
approved security policies. Acquisition PMs and C/S/A Chief Architects should ensure that
procedures are implemented to make all architecture data accessible.

2.5.3 Understandability
Data can be understood when a consumer can use the data, as discovered and made available

from the shared space, for the intended purposes. Understandability implies that users can
interpret the structure and semantics of the content consistent with COI-established structural and
semantic agreements. A common understanding requires that both producer and consumer agree
on the meaning of their shared data. For the DoDAF architecture community the structure and
semantics for architecture data are provided by the CADM. Acquisition PMs and C/S/A Chief
Architects should ensure that procedures are implemented to make all architecture content
available in conformance with the structure and semantics of the CADM to enable anticipated
and unanticipated users to understand and use architecture data.

2.5.4 Trust
The trust aspect of the NCDS is concerned with ensuring that the source and quality of data,

and data access controls can be identified and trusted. The three key aspects of the Architecture
Data Management Strategy for ensuring trust: 1) controlled access to architecture data assets
based on user roles, 2) practices for creating and managing high quality architecture data, and 3)
metadata that identifies the source, quality, and access control of data.

Architecting environments should provide capabilities for setting up user groups and
allowing access to, as well as release of, "approved" documents at the discretion of the group
sponsor or approval authority, thereby imparting a measure of trustworthiness in “approved”
documents. Group administrators should be able to manage multiple product versions, thereby
enabling users to identify and track version changes. At the data level, all record changes should

2-9

be logged to identify the user, time, and type of change. A data auditing feature should enable
rolling back any changes made. Data should be tagged to control access based on user roles and
need to know.

Acquisition PMs and C/S/A Chief Architects should ensure that procedures are implemented
to 1) control access to architecture data based on user roles, 2) create and verify the use of
authoritative taxonomies and reference data in architectures, and 3) use the DDMS and
architecture community extension metadata elements to document the source, quality, and access
control aspects of architecture data.

2.6 DATA QUALITY
Data quality affects the ability to analyze architecture models and the ability to compare or

integrate independently developed architectures. Architecture data quality can be characterized
and measured at various levels of granularity. At the data element level there are two key aspects
of data quality. One is conformance with established structural and semantic specifications (i.e.,
the definitions of fundamental data entity types or object classes and their attribute data type
specifications). The CADM provides such a specification for architecture data. Another aspect is
conformance with preferred or mandated entity or object instance values (referred to here as
reference data) established by recognized authorities, or authoritative sources. An authoritative
source is a designated or recognized authority for specifying the acceptable or allowable data
instance values (e.g., domain values) and their taxonomies. A reference data set refers to a set of
element values that are approved or designated for use by a recognized authoritative source.

An example of an authoritative source for reference data is the Joint Staff for the names and
definitions of Joint Capability Areas (JCA). Since it is the designated authority for defining
JCAs, the Joint Staff serves as the authoritative source for “JCA_Name” and “JCA_Description”
and for the taxonomic composition of JCAs. Other sources of definitions for JCAs would not be
considered authoritative and should not be used in developing architecture descriptions within
the DoD. DoD architects should use reference data from recognized authoritative sources
wherever possible. The use of authoritative reference data in architectures eliminates ambiguity,
provides consistency, and facilitates analysis and integration.

When architecture data elements are combined to form an architecture description, another
aspect of data quality becomes important – that is, the degree to which an architecture model
accurately represents an existing “as-is” architecture, or the proper association of components in
a notional “to-be” architecture. This aspect of data quality is dependent on the knowledge of the
architecture team about the capability domain being modeled and the reliability of the architects
in accurately representing facts about the domain. This aspect of architecture data quality is
difficult to measure, but can be controlled through subject matter expert (SME) review and
architect training.

Data quality is ultimately dependent on, and should be assessed based on, the intended use.
Intended use may vary from communicating general information about a mission scenario to
providing a system engineering requirements baseline. Since a single quality metric or set of
metrics is not practical for all intended uses, objective measures of quality should be specified
based on intended use by C/S/A components. For example, C/S/A Chief Architects may establish
requirements for architecture data quality based on any or all of the following criteria:

• Use of specific authoritative taxonomies and reference data

2-10

• Use of specific product description (i.e., view) templates with mandatory elements
• Use of specific description methodologies

These criteria and potentially many others may then be used as the basis for quality assessment
of Component archtiectures.

To enhance quality in architecture descriptions, acquisition PMs and C/S/A Chief Architects
should ensure: 1) architecture data elements created and used in architecting tools are derived
from or mapped to elements of the CADM, 2) authoritative reference data are used wherever
possible and practical, 3) architects are thoroughly familiar with the DoDAF and trained in the
use of architecting tools, and 4) SMEs are involved in the development, review, and approval of
architecture descriptions.

2.7 ROLE OF DARS AS AN EXTENSION OF THE ENTERPRISE (METADATA)
CATALOG

DARS provides EA content cataloging and discovery by registering content discovery
metadata and implementing a modified version of the Enterprise Catalog federated search.
Metadata registration and the federated search enables DARS to function as a virtual extension
of the Enterprise Catalog. DARS implements a set of federation standards for cataloging and
linking architecture content from any content repository implementing the federation standards.
The standards include the DDMS plus the architecture community discovery metadata extension
and web service specifications for content provider metadata registration and federated search.

2.8 ROLE OF DARS AS AN AUTHORITATIVE SOURCE/REPOSITORY FOR DODAF
REFERENCE DATA

Authoritative reference data should be made visible and accessible to all DoD architects and
unanticipated users to support the objectives of the NCDS. DARS supports this goal by
associating discovery metadata with reference data sets and by providing services for loading,
extracting, and version management of reference data.

Authoritative data sources can provide access to reference data sets via DARS communities.
A DARS user group community may be identified as the authoritative source for a particular
type of reference data. The Joint Staff, for instance, is identified as the authoritative source for
the UJTL elements. The UJTL elements are available for export from DARS as a CADM XML
record set. This record set can be used in any architecting tool environment to ensure that
instances of process activities modeled in that tool environment are authoritative and will be
consistent with process activities based on the same reference data in models created in other
tool environments. This enables architecture data integration, since each independently
developed model using the same reference data can be integrated via those common reference
data elements.

Since reference data can change over time, it needs to have an associated version identifier,
management authority identifier, and release or approval date to support the “Trust” aspect of the
NCDS. These elements of metadata are associated with the reference data to enable discovery
searches and assessment of the suitability for use. A “Data Configuration Manager” role provides
exclusive access to edit user group reference data records. DARS user group community Data
Configuration Managers are responsible for maintaining the version identity of all structured data

2-11

in DARS. The DARS community “Approval Authority” is responsible for releasing reference
data with appropriate discovery metadata and access controls.

2.9 ROLE OF DARS AS AN AUTHORITATIVE SOURCE/REPOSITORY FOR DODAF
REFERENCE ARCHITECTURES

Reference architectures provide approved C/S/A views of mission areas or subject domains
and may also be approved for use by other architects in developing interfaces or extensions.
DARS provides version management and release control for reference architectures to support
the objectives of the NCDS and the needs of the DoD architecture community. It provides a
shared space for posting authoritative reference architectures and data, thereby making accessible
and trusted data available to the DoD community. DoD architects, analysts, and unanticipated
users can search DARS for reference architectures and download products of interest in native
tool formats or as CADM XML for analysis or reuse.

To support accessibility and trust, DARS community “Approval Authorities” can assign
access control levels to reference architectures. DARS provides three levels of access control. A
“Public” access control level provides metadata visibility and data access to all registered DARS
users. A “Protected” access control level provides metadata visibility to all registered DARS
users, but restricts data access only to users granted “Protected” access within a user group
community by a community “Administrator.” A “Private” access control restricts metadata
visibility and data access only to users granted “Private” access within a user group community
by a community “Administrator.” The community “Administrator” role is granted by a user
group community “Sponsor.”

Having robust access controls and metadata ensure that both the producer and consumer can
trust the data they are sharing.

2.10 DARS APPROACH TO REALIZING NCDS GOALS
2.10.1 Visible

DARS captures and stores discovery metadata for all products and data loaded into its
database. Discovery metadata are cataloged and tagged using the DDMS. DDMS specifies the
set of metadata elements needed to identify and locate data assets in a net-centric data
environment and provides a standard set of XML tags for tagging the metadata. DARS provides
a federated metadata search web service that can be called to expose all metadata cataloged for
the architecture data assets held in DARS or in any federated architecture repository using
DDMS XML tags. This web service enables discovery of all data assets in DARS and federated
repositories, thereby satisfying the visibility requirement of the NCDS.

2.10.2 Accessible
Once data assets are located in DARS, the assets are made accessible via the DARS web site

or its data extraction web service. DARS provides both data storage and extraction via web pages
or web services. Presently, architecture products may be loaded into DARS in native file formats
or as XML documents conforming to the DoD CADM XML schema. The DARS CADM XML
loader provides an additional data management service by assigning globally unique enterprise
identifiers (EIDs) to all records loaded into its database. EIDs are used in DARS to allow subject
domain managers to create and maintain authoritative reference data that can be distributed to

2-12

independent domain architects for use in developing architecture models that will ensure
consistent data, thereby enabling correlation and integration of the resulting products.

2.10.3 Understandable and Interoperable
Presently, structured architecture data is made understandable and interoperable via database

conformance with the CADM standard. The CADM standard includes an XML schema
specification and provides a complete description of the semantics of conforming architecture
data. DARS also provides a structured data extractor that generates XML documents conforming
to the CADM XML schema from structered data loaded into its database. DARS provides a
structured data loader that loads and stores structured architecture data in conformance with the
CADM. To enhance understandability and interoperability of architecture data developed using
government and commercial architecture tools, OASD(NII) sponsors an Architecture
Interoperability Program (AIP) that has established an interoperability certification program to
assist tool developers in implementing the CADM XML specification for data exchange.
Specifications for DARS interoperability are available in the AIP community in DARS. Tool
developers interested in participating in the AIP and getting certified as DARS conformant can
subscribe to the AIP community in DARS and contact OASD(NII) for more information.

An architecture federation strategy is presented in section 3.0 that details how architecture
repositories will federate archtiectures across DoD. Architecture data are expected to be
developed and maintained in a federation of repositories. The challenge for DoD is to ensure that
tool vendors have the standards and support needed to implement means of creating and
exposing both metadata and data conforming to the data standards of the architecture community
to be able to interoperate so that architecture data, once discovered, can be interchanged and
understood between the various tools in a federated environment.

2.10.4 Trusted
The trust aspect is concerned with ensuring that the sources of data can be identified and

trusted. Trust requires that a potential user is able to identify the source, authority, release or
approval status, access control, and quality aspects of the data. To ensure trust, DARS captures
and catalogs metadata needed to establish the source and quality of data. Responsibility for
approval should be in accordance with tiered accountability established within each C/S/A
component. DARS offers a robust set of capabilities for setting up user groups and allowing
access to, as well as release of, "approved" documents at the discretion of the community
Approval Authority or Administrator, thereby imparting a high degree of trustworthiness in
“approved” documents. Community Administrators are able to manage multiple product
versions, thereby enabling users to identify and track version changes. At the data level, all
record changes are logged to identify the user, time, and type of change. A data auditing feature
can be used to roll back any changes made. DARS also tags data to control access based on user
roles and need to know.

2.10.5 Responsive to User Needs
DARS provides a scalable, web-based capability that directly supports distributed EA

development and analysis. DARS provides an interactive graphical environment and the ability
to navigate the underlying CADM database by drilling down on graphic elements to extract
details from the database. DARS supports version management of architecture products and
reference data, thereby providing traceability of version changes and the pedigree of
architectures and data, enabling determination of the applicability of architecture data for further

2-13

analysis and reuse across the DoD enterprise. Reuse of authoritative reference data sets and
architecture products stored in DARS will enhance interoperability by enabling correlation and
aggregation of architectures across DoD, thereby enabling interoperability assessments across
multiple missions, systems, and theaters of operation. Data stored in DARS provides a suitable
base for supporting many types of management decisions including capabilities assessment, gap
analysis, portfolio management, system engineering, facilities management, and capital
investment planning.

3-1

3 ARCHITECTURE METADATA AND FEDERATED ARCHITECTURE
REGISTRY APPROACH

This section presents EA federation concepts and guidance based on both the NCDS and
Federal policy on the development and use of EAs.

Architectures are currently developed independently by many organizations across DoD.
This situation raises several issues for architects and architecture end users. First, both architects
and architecture end users require the capability to globally search for architectures that may be
relevant for analysis or specific architecture development efforts. Second, a consistent set of
standards for architecture version management is needed to enable users to determine the
development status, quality, and authority of architecture data. Third, a standard methodology is
needed for specifying the alignment or linkages between architectures developed using different
tools and maintained in independent repositories. A methodology for federating architectures
must address these issues. The first two issues are addressed via metadata tagging and federated
search. The third issue is addressed via content metadata linking.

The key net-centric principles that must be adhered to by the EA community are that data
assets must be made visible, accessible, understandable, trusted, and must support
interoperability. These principles do not assume or prescribe any requirements for physical data
storage. Data may be stored in any format using relational, object oriented, or hybrid
technologies based on any kind of data model. These principles do, however, require that
agreements be reached within the DoD EA COI on the structure and semantics of data elements
used for data asset discovery, linking, exchange, and integration. Metadata elements needed to
support the EA user services described herein are defined and prescribed for the DoD EA COI as
the standard for EA services.

3.1 CONCEPT SUMMARY
The federation approach detailed herein is based on the assumption that architectures will

continue to be developed and maintained in independent repositories throughout DoD for the
foreseeable future. A set of federation standards must be implemented by autonomous
repositories to enable discovery, linking, and consistent version management of architecture data
assets. The standards specified herein include a set of metadata to be maintained for all data
assets in DoD architecture repositories and Web Services for discovery, registration, and quality
assessment.

EA federation services will enable architects, analysts, planners, and unintended users to
search for and access architecture data assets of interest and assess their interrelationships and
suitability for use. The federated EA will be constructed via classification of data assets
according to the DoD BRM at a minimum.

Architecture producers will use EA federation services to register minimum metadata
required for describing architecture content, access restrictions, and approval status. The
metadata registration service will also enable content linking to show alignment between EA
components. This metadata will enable potential consumers to search for, evaluate suitability for
intended use, and retrieve data of interest.

A Federated Discovery service is specified to enable users to execute federated searches for
architectures meeting specified search parameters.

3-2

A Metadata Registration service is specified to enable cataloging and linking of architectures
in federated repositories. The Registry service will enable architects using independent tool and
repository environments to specify linkages between architecture data assets developed and
maintained in local repositories and nodes of approved classification taxonomies, which will
show alignment of component architectures and enable users to navigate a federated EA.

Mechanisms for quality assessment services are recommended to ensure data consistency and
facilitate aggregation, integration, and assessment.

3.2 USE CASES
Potential architecture users include combatant commanders, operations planners, acquisition

managers, systems engineers, and budget analysts. In many cases, architecture data users are
both producers and consumers of architecture data. All can benefit from an awareness of and
access to relevant architecture assets that may support planning or decision processes. Equally
beneficial is the ability to identify the source, quality, and authority of architecture data assets
and their interrelationships and dependencies.

3.2.1 Data Consumer
The federated EA services will support the following data consumer requirements:

• Ability to find all architecture data that may be relevant to a decision-making process
or potentially applicable to a new architecture project

• Ability to evaluate the sufficiency, quality and authority of the data,
• Ability to identify dependencies and relationships between various architecture data

assets

 Users may first want to ascertain what architecture data assets are available that may be
relevant to their problem or situation. Users should have the following options for finding
architecture data assets of interest:

• Ability to execute a search for data meeting specific search criteria
• Ability to browse a catalog of data assets available in all architecture repositories

3.2.2 Architecture Search
The architecture search capability must enable a user to specify a set of criteria for

architecture data assets of interest. That set of search criteria needs to be propagated to all
architecture data repositories. The user must receive a consolidated response that:

• Provides sufficient metadata on data assets meeting the search criteria to enable the
user to ascertain their relevance

• Provides links to the sources

The federated search service must be able to accept the following user search criteria at a
minimum:

• Subject key words for a category (i.e., classification taxonomy)
- Joint Capability Area = Joint C2
- DoDAF product type = OV-5

• Releasing organization name [=/like]

3-3

• Approval authority organization name [=/like]
• Approval date [before/after]
• Effective Start date [before/after]
• Effective End date [before/after]
• Architecture Scope = [Mission, Functional, Enterprise, Program]
• Temporal Scope = [As-is, To-be]
• Completion Status = [Under development, Review draft, Complete]
• Use Type = [Baseline, Actual, Target]
• View Type = [All, Operational, System, Technical, Other]

The federated search service must enable users to specify each of these search criteria in a
search interface using pick lists for the allowable values for each of the criteria. The search
interface should allow specifying Boolean operations on multiple criteria (e.g., Releasing
Organization Name = SOUTHCOM OR SOCOM AND Temporal Scope = “To-be”).

The search response must provide consistent metadata from all sources. The response should
include all available architecture metadata, including any available metadata not specified as
search parameters. For example, a user may want to find all OV-5s for Joint C2. The user should
only need to specify the subject key words “DoDAF product type = OV-5 AND Joint Capability
Area = Joint C2.” However, the response should provide all available architecture metadata for
the matching results from each source. The additional metadata may be evaluated by the user for
determining the potential interest value of the matching results (e.g., products with Completion
status = “Under development” may be of lesser interest than products with Completion status =
“Complete”).

Once a user determines which architecture products are of interest, a link associated with
each result will enable the user to access the content in the source repository. Depending on the
security policy of the source repository, the link may either provide direct access to the selected
product in the native repository format or visualization environment, or it may direct the user to a
role subscription service on the native repository for requesting access to the product. User
credentials should be passed by the search service to the source repository for authentication to
enable automated access based on access roles/privileges associated with the user in the source
repository.

3.2.3 Registry Browsing
Users may wish to browse a catalog of data asset holdings in federated repositories to find

assets of interest. Cataloging of repository holdings via metadata will enable users to search for
data assets by navigating classification taxonomies similar to browsing item classifications in on-
line shopping web sites. Architecture classification schemes suitable for the DoD EA community
include categorization by JCA, Joint Mission Areas (JMA), Missions, UJTL, DoDAF product
type, functional area, acquisition program, transformation architecture, as well as others.
Multiple classifications may apply to any single architecture. Catalog navigation trees will use
standardized category names from classification taxonomies, when available, and may be
extended by domain extensions, where needed. Navigation trees will also provide links to
detailed metadata on architecture data assets to enable users to determine potential interest value
and include links to the products in source repositories.

3-4

3.2.4 Data Producer
Various types of architecture repositories based on COTS and GOTS tools and databases are

used throughout the DoD. Existing repositories typically collect and maintain metadata on
architecture projects. Repository managers must ensure metadata are maintained on all
architecture data assets that might be specified as search parameters by potential users. Most
pertinent metadata are typically included in the AV-1 for an architecture project. Metadata
searching will require AV-1 metadata to be captured and stored as structured data in federated
repositories to enable searching. Metadata must also be recorded on architecture project status
including creation date, date last modified, approval date, and completion status to enable users
to determine currency, authority, and applicability of the project data.

The EA federation services must support the following data producer requirements:

• Ability to capture all architecture discovery metadata for each architecture data asset
• Ability to align or link architecture data assets under one or more classification

taxonomies, including, at a minimum, the DoD BRM
• Ability to create, identify, manage, and provide access to authoritative Reference

Data
• Ability to assess data quality in terms of conformance with the CADM, DoDAF

product specifications, and the use of authoritative reference data

3.3 FEDERATION SERVICES
EA federation services described in this section have been implemented in DARS and several

other federated architecture repositories. Detailed specifications for the web services, including
Web Service Description Language (WSDL) specifications, XML schemas for metadata, and
sample client code, are maintained in DARS and are available for download.

3.3.1 Registration
To implement a federated search service, metadata elements must be defined to capture

required search parameters. The DDMS v1.3 provides the baseline specification for architecture
discovery metadata. Additional discovery metadata specifications provided by the CADM are
also used. Several new metadata elements, defined as DARS metadata, are specified to enable
version management, architecture registration, and cataloging in DARS. Table 3-1 in section
3.3.5 provides a summary of the applicable architecture metadata elements.

A metadata registration web service has been implemented in DARS to enable DoD
architecture data asset producers to register and catalog content metadata in DARS via a web
service client application. This service should be used for registration of all available architecture
metadata specified in Table 3-1 as soon as it is created in order to support the “post in parallel
with processing” aspect of the NCDS. A metadata registration user interface has been
implemented in DARS and several federated repositories to enable manual and semi-automated
entry of architecture metadata. However, the registration web service specification may be used
for automated machine-to-machine transfer of metadata. Architecture tool developers should use
automated processes to extract architecture metadata from the tool environment and invoke the
registration web service automatically as soon as the minimum required metadata has been
collected for an architecture project.

3-5

Each federated repository is responsible for implementing a registration client conforming to
federation registration service specifications. A registration client should format and send new
registrations or registration update requests to DARS by invoking the registration web service
whenever a new architecture is created (saved) or a registered architecture’s metadata are
modified. Registration requests will provide all available metadata for the architecture. The
DARS registration web service will automatically process registration requests from federated
repositories, when received. Once processed, DARS sends a registration identifier back to the
registration client to use to reference the architecture in future registration update requests.

Registration clients should provide a pick list-driven user interface for selecting the
classification taxonomy elements that specify associations for the architectures being registered.
An architecture link to a classification taxonomy element should identify the type of association
as one of [“Is equivalent to,” “Is part of,” “Supports,” or “Replaces”]. The taxonomy element
association is used by the DARS registration service to catalog the data assets.

To support discovery, federation repositories must capture all mandatory DDMS metadata
and any additional architecture metadata specified for architectures developed in local tool
environments. Each legacy COTS/GOTS tool and repository environment typically maintains a
subset of the required architecture metadata. Some of the metadata can be captured
automatically, from context and some can be extracted from the AV-1 for the architecture
project. Federation repository owners must implement mechanisms to collect any missing
metadata by making extensions to the tool/repository metamodel and/or user interface.

3.3.2 Discovery
A federated search user interface has been implemented in DARS and several other

federation repositories. Users may input search parameters via either 1) a pick list-driven user
interface in DARS, or 2) a federated search web service client interface in the local tool
environment if implemented. Subject Area Coverage key words must be selected from DoD
BRM Mission Area activity lists to support content classification in accordance with the BRM.
The search interface may enable specifying Boolean operations on selected parameters. For
federated repositories that implement a local search client, the DARS federated search web
service will send result sets back to the local client. The search results will consist of records
matching the search criteria and will contain as much of the architecture metadata as is available
from federated repositories. Uniform Resource Locators (URLs) in the metadata result set will
provide links to the source architectures in the confederate repositories.

3.3.3 Version Management
A standard set of version management metadata are required and specified for federated

repositories to provide consistency in search result sets and enable users to determine the
development status and authority of architecture data. Federation repository owners must
implement role-based controls and processes for creating and editing version identification and
status metadata in accordance with the federation standards to ensure adequate control (trust) of
the data.

3.3.4 Cataloging and Linking
A registry of data asset holdings has been implemented in DARS to provide architects and

architecture users with one-stop shopping for architecture data. The DoD BRM Mission Areas
are used as the primary cataloging taxonomy for DoD EA components. Other classification
taxonomies may be specified and authorized for classification of architecture data assets.

3-6

Authoritative Reference Data Sets should be specified for use in architecture descriptions for
data elements that are needed for consistency in establishing links between EA artifacts. Optional
classification taxonomies may include the following:

o Combatant Command (COCOM) Architectures: List of COCOMS with Joint Task Force
(JTF)/Mission Architectures as second tier

o Program Architectures: List of PEOs and PMs with core program names as second tier
o Transformation Architectures: List of core transformation architectures

The DARS registration service catalogs and links registered architectures in federated
repositories via classification taxonomy elements specified in the Subject Area Coverage
metadata element. Architecture registration and linking enables users to browse for architecture
data assets in DARS and federated repositories by navigating architecture classification trees.

3.3.5 Metadata Elements
Table 3-1 lists prescribed EA metadata elements and their specification sources. All elements

listed are candidate search parameters for the federated search and should be captured by all
confederate repositories. To provide consistency, federation conventions must be followed for
date and version formats. Complete and current specifications for all federated EA metadata
elements, including XML schemas, are available for download from DARS.

Architecture metadata example:
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) -->
<ddms:Resource xmlns:ddms="http://ddms.dod.mil"
xmlns:ICISM="urn:us:gov:ic:ism:v2" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dars="http://dars.ddms.dod.mil" xmlns:cadm="http://cadm.ddms.dod.mil"
xsi:schemaLocation="http://dars.ddms.dod.mil DDMS_DARS_Extension.xsd">
 <ddms:identifier ddms:qualifier="docId"
ddms:value="72064646457648748"/>
 <ddms:identifier ddms:qualifier="URL"
ddms:value="https://dars1.army.mil"/>
 <ddms:identifier ddms:qualifier="version" ddms:value="1.01"/>
 <ddms:title ICISM:classification="U" ICISM:ownerProducer="USA">T-AKE
C4ISP Final.doc</ddms:title>
 <ddms:description ICISM:classification="U"
ICISM:ownerProducer="USA">Lewis And Clark (T-AKE) Class Auxiliary Cargo and
Ammunition Ship C4I Support Plan (C4ISP).</ddms:description>
 <ddms:language
ddms:qualifier="http://metadata.dod.mil/mdr/ns/ExtStd/iso_639-2b.owl#en"
ddms:value="en"/>
 <ddms:dates ddms:posted="2004-05-13Z" ddms:created="2006-07-
03T14:36:33Z" ddms:infoCutOff="2004-05-13Z" />
 <ddms:rights ddms:copyright="true" ddms:privacyAct="false"
ddms:intellectualProperty="false"/>
 <ddms:type ddms:qualifier="fileCategory" ddms:value="XML" />
 <ddms:creator ICISM:classification="U" ICISM:ownerProducer="USA">
 <ddms:Person >
 <ddms:name>John Doe</ddms:name>
 <ddms:surname>Doe</ddms:surname>
 <ddms:userID>72064646457648700</ddms:userID>
 <ddms:affiliation>SPAWAR</ddms:affiliation>

3-7

 <ddms:phone>619-524-3674</ddms:phone>
 <ddms:email>john.doe@navy.mil</ddms:email>
 </ddms:Person>
 </ddms:creator>
 <ddms:publisher ICISM:classification="U" ICISM:ownerProducer="USA">
 <ddms:Organization ddms:orgId= "67745383939" >
 <ddms:name>SOUTHCOM</ddms:name>
 <ddms:phone>305-234-4567</ddms:phone>
 <ddms:email>richard.smith@southcom.mil</ddms:email>
 </ddms:Organization>
 </ddms:publisher>
 <ddms:publisher ICISM:classification="U" ICISM:ownerProducer="USA">
 <ddms:Person>
 <ddms:name>Alton</ddms:name>
 <ddms:surname>Levis</ddms:surname>
 <ddms:userID>72064646457648700</ddms:userID>
 <ddms:affiliation>southcom</ddms:affiliation>
 <ddms:phone>305-369-3616</ddms:phone>
 <ddms:email>alton.levis@southcom.mil</ddms:email>
 </ddms:Person>
 </ddms:publisher>
 <ddms:publisher ICISM:classification="U" ICISM:ownerProducer="USA">
 <ddms:Organization ddms:orgId= "67745383939"
dars:orgRoleType="COMMUNITY VERIFICATION/ VALIDATION EXAMINER">
 <ddms:name>SOUTHCOM</ddms:name>
 <ddms:phone>305-234-4567</ddms:phone>
 <ddms:email>katherine.holt@southcom.mil</ddms:email>
 </ddms:Organization>
 </ddms:publisher>
 <ddms:contributor ICISM:classification="U" ICISM:ownerProducer="USA">
 <ddms:Organization ddms:orgId= "67745383939"
dars:orgRoleType="COMMUNITY PRODUCER">
 <ddms:name>CIO/G6</ddms:name>
 <ddms:phone>703-234-4567</ddms:phone>
 <ddms:email>paul.snyder@us.army.mil</ddms:email>
 </ddms:Organization>
 </ddms:contributor>
 <ddms:pointOfContact>
 <ddms:Person>
 <ddms:name>James</ddms:name>
 <ddms:surname>Baker</ddms:surname>
 <ddms:userID>72064646457648700</ddms:userID>
 <ddms:affiliation>JCS_J8</ddms:affiliation>
 <ddms:phone>703-605-3674</ddms:phone>
 <ddms:email>james.baker@js.pentagon.mil</ddms:email>
 </ddms:Person>
 </ddms:pointOfContact>
 <ddms:format>
 <ddms:Media>
 <ddms:mimeType>text/html</ddms:mimeType>
 <ddms:extent
ddms:qualifier="http://metadata.dod.mil/mdr/ns/UnitOfMeasure/0.1/ComputerStor
age.owl#byte" ddms:value="871936"/>
 <ddms:medium>digital</ddms:medium>
 </ddms:Media>
 </ddms:format>
 <ddms:subjectCoverage>

3-8

 <ddms:Subject>
 <ddms:category ddms:label="mission area 1"/>
 <ddms:category
ddms:qualifier="https://dars1.army.mil/JointCapabilityAreaList#capabilityArea
1" ddms:code="capabilityArea1" ddms:label="capability area 1"/>
 <ddms:category
ddms:qualifier="https://dars1.army.mil/dodafProductTypeList#ov2"
ddms:code="ov2" ddms:label="ov-2"/>
 <ddms:category
ddms:qualifier="https://dars1.army.mil/dodafProductTypeList#ov3"
ddms:code="ov3" ddms:label="ov-3"/>
 <ddms:category
ddms:qualifier="https://dars1.army.mil/dodafProductTypeList#ov4"
ddms:code="ov4" ddms:label="ov-4"/>
 <ddms:category
ddms:qualifier="https://dars1.army.mil/dodafProductTypeList#ov5"
ddms:code="ov5" ddms:label="ov-5"/>
 <ddms:keyword ddms:value="Lewis and Clark"/>
 <ddms:keyword ddms:value="C4ISP"/>
 <ddms:keyword ddms:value="ammunition"/>
 <ddms:keyword ddms:value="ship"/>
 </ddms:Subject>
 </ddms:subjectCoverage>
 <ddms:virtualCoverage ddms:address="ff" ddms:protocol="ff" />
 <ddms:virtualCoverage ddms:address="ff" ddms:protocol="ff" />
 <ddms:temporalCoverage>
 <ddms:TimePeriod>
 <ddms:name>jhgjhg</ddms:name>
 <ddms:start>2006-04-13T20:57:51Z</ddms:start>
 <ddms:end>2004-05-17T10:11:00.990Z</ddms:end>
 </ddms:TimePeriod>
 </ddms:temporalCoverage>
 <ddms:temporalCoverage>
 <ddms:TimePeriod>
 <ddms:name>2010</ddms:name>
 <ddms:start>Not Applicable</ddms:start>
 <ddms:end>2004-05-17T10:11:00.990</ddms:end>
 </ddms:TimePeriod>
 </ddms:temporalCoverage>
 <ddms:security ICISM:classification="U" ICISM:ownerProducer="USA"
ICISM:dateOfExemptedSource="2006-12-01"/>
 <dars:darsExtension>
 <dars:documentAccessLevelCode>PUBLIC</dars:documentAccessLevelCode>
 <dars:dates modified="2004-05-17T10:01:00.999Z" />
 <dars:cadmExtension>
 <cadm:DOC_APP_CALDT>2004-05-
17T10:01:00.999Z</cadm:DOC_APP_CALDT>
 <cadm:ARCH_ID>646479326345</cadm:ARCH_ID>
 <cadm:ARCH_NM>CID Architecture</cadm:ARCH_NM>
 <cadm:ARCH_START_DT>56678</cadm:ARCH_START_DT>
 <cadm:ARCH_END_DT>56678</cadm:ARCH_END_DT>
 <cadm:ARCH_LVL_CD>2</cadm:ARCH_LVL_CD>
 <cadm:ARCH_TEMP_SCOPE_CD>2</cadm:ARCH_TEMP_SCOPE_CD>
 <cadm:ARCH_COMPL_STA_CD>2</cadm:ARCH_COMPL_STA_CD>
 <cadm:ARCH_USE_TY_CD>2</cadm:ARCH_USE_TY_CD>
 <cadm:ARCH_VW_TY_CD>2</cadm:ARCH_VW_TY_CD>
 </dars:cadmExtension>

3-9

 </dars:darsExtension>
</ddms:Resource>

Table 3-1: Architecture Metadata for Classification, Discovery, and Version Management

Metadata Element Metadata Specification Source

• Identifier* (URL) (DDMS Identifier Qualifier = URL, Value)
• File name (DDMS Identifier Qualifier, Value)
• Security Classification* (DDMS: Security)
• Title* (Architecture Name) (DDMS: Title)
• Subject Key Words* (DDMS: Subject)

• Joint Mission Area (DDMS: Category Qualifier + Category Label)
• Joint Capability Area (DDMS: Category Qualifier = “JCA List” + Category Label)
• DoDAF Product type (DDMS: Category Qualifier = “DODAFPRODTY” + Cat Label)

• Creator* (DDMS: Creator.Person)
• Publisher (COI) (DDMS: Publisher)
• Approval Authority (DDMS: Contributor Organization)
• Creation Date (DDMS: Date.Created)
• Last Modified Date (DARS: Date.Modified)
• Approval Date (CADM: DOC_APPR_CALDT)
• Effective Start Date (DDMS: Temporal Coverage Start)
• Effective End Date (DDMS: Temporal Coverage End)
• Version (DDMS: Identifier Qualifier= Version, Value)
• Access Level (DARS: AccessLevel)

[Public, Protected, Private]
• Architecture Scope (CADM: ARCH_LVL_CD)

[Enterprise, Mission, Functional, Program]
• Taxonomy Element Association (DARS: TaxonomyName [e.g., JCA, JMA, COAL, CSFL,] +

 OrdinateElementName + SubordinateElementName +
 AssociationType [e.g., Part of, Replaces, etc.])
• Temporal Scope (CADM: ARCH_TEMP_SCOPE_CD)

[As is, To be, NA]
• Completion Status (CADM: ARCH_CMPLTN_STA_CD)

[Under development, Review draft, Complete]
• Use Type (CADM: ARCH_USE_TY_CD)

[Baseline, Actual, Target]
• View Type (CADM: ARCH_VIEW_CAT_CD)

[All, Operational, System, Technical, Other]
• Format (DDMS: format.Media.mimeType)
* Mandatory DDMS metadata

Access Control Level will be used as it is in DARS to control access to architecture data assets
and data.

Architecture Scope will be used to identify top-level categories for cataloging taxonomies.
Multiple taxonomies may apply for each scope category.

3-10

Taxonomy Element Association will be used to identify linkages between classification
taxonomy elements and the confederate architecture data assets. Multiple linkages may be
specified.

4-1

4 CORE ARCHITECTURE DATA MODEL V1.5

4.1 OVERVIEW
The major elements of a “core architecture data model” are described as follows:

“Core”: The essential elements of architecture information that need to be developed,
validated, and maintained and that should be sharable across architecture concerns to
achieve architecture goals (e.g., interoperability, investment optimization).

“Architecture Data”: The possible piece-parts of architecture products and related
analytical tools in a rigorous definition of the pieces (object classes), their properties,
features, or attributes, and inter-relationships.

“Data Model”: A data model defines the objects of a domain, their inter-relationships, and
their properties, normally for the purpose of a database design. There are three data
model levels, from highest to lowest: Conceptual, Logical, and Physical. Conceptual
models are the highest level. They model the user concepts in terms familiar to users.
Details may be left out to improve clarity and focus with users. Logical models are more
formal, often with considerations of unique data representation (non-redundancy or
“normalization”), emphasis on semantic well-definedness and exclusivity (non-
overlapping entities), and domain-level completeness. Logical models need not commit
to a specific Data Base Management System (DBMS). The OV-7 is a logical data model.
Physical models are usually the most detailed and the level sufficient for database
generation. The Physical model must contain all the information necessary for
implementation. The Physical model often addresses performance considerations. The
SV-11 is a physical data model.

CADM v1.5 presented in this volume represents the initial baseline. Although major changes
are not anticipated, the final release may vary from this version. Conformance is not required
until the final release is posted in the DISR. This section describes the CADM at the Logical and
Physical level. CADM is the data representation of the DoDAF “product” models defined in
Volume II. The Conceptual view describes the principal entities of DoDAF models and the inter-
relationship between them. The Logical view goes on to describe the attributes of those entities
and provide more detail regarding the inter-relationships. The Physical view goes on to specify
table, field, and relationship properties at a level of specificity sufficient to generate and
implement a database. The Logical and Physical views also contain business rules.

Data modeling tools allow for the specification of subsets of CADM pertaining to each
DoDAF model-based product. CADM “product” subviews are contained in Volume II, alongside
the product description to which they pertain.

4.2 CADM DESIGN AND MAINTENANCE PRINCIPLES
CADM may be implemented in multiple target environments, e.g., implementations exist in

Microsoft (MS) Access, Structured Query Language (SQL) Server 2000, and Oracle DBMS.
CADM conformance means the following:

a. The conforming model is based on a subset of the CADM (neither all the entities nor all
attributes of selected entities have to be part of the chosen subset).

4-2

b. Extensions of that subset are allowed (but should not be redundant with elements of the
CADM itself); extensions that could apply to the CADM for general use should be
proposed for incorporation into the model.

c. Agreed datatypes and coded domains must be used.
d. Points of contact should be identified and consulted when generating instances of keys

(to avoid redundancy and non-uniqueness).
e. Primary key attributes for entities taken from the CADM should be identical with or

directly derivable from the primary key attributes specified in CADM (alternate keys may
be used but CADM keys need to be preserved).

f. Keys for authoritative data source instances should be retained to enable effective updates
from those sources. The goal of CADM conformance is to ensure fully faithful
information transfer among databases, which cannot happen if the primary keys of one
database have no correlation to the primary keys of another database for the same entity.

Architecture data repositories that conform to CADM have the ability to compare and share
architecture data across architecture repositories and databases. Non-conforming repositories
require translation and data correlation and reconciliation. Translation losses and infeasible
reconciliations can occur. Translation, data correlation, and reconciliation costs and impacts are
typically underestimated. For these reasons, development of architecture data in non-conforming
data repositories, databases, or tools should be carefully considered and avoided whenever
possible.

4.3 DESCRIPTION OF THE CADM V1.5 LOGICAL MODEL
4.3.1 The CADM v1.5 Superstructure

As discussed in Volume II, the new version of CADM consists essentially of two
components:

• A superstructure made of a set of high-level entities, namely, Object, ObjectVersion,
ObjectVersionStructure, ObjectVersionStructureDetail, and
ObjectVersionStructureAssociation, and five subtypes of ObjectVersion: ObjectItem,
ObjectType, ObjectVersionAssociation, ObjectByReference, and ArchitectureElement

• A series of subtype hierarchies under ObjectItem, ObjectType, and ArchitectureElement
Figure 4-1 shows the IDEF1X representation of the CADM v1.5 superstructure.

4-3

IS_CHARACTERIZED_BY_1770

IS_CITED_FOR_1667

INCLUDES_1666

IS_CHARACTERIZED_BY_1662

IS_OBJECT_FOR_1460

IS_SUBJECT_FOR_1459

IS_CONFIGURED_AS_SPECIFIED_IN_1455

IS_SUBJECT_FOR_1660

IS_OBJECT_FOR_1661HAS_1653

categoryCode

ObjectByReferenceCharacterization
objectByReferenceCharacterizationIdentifier

objectByReferenceIdentifier (FK)
objectByRefrenceVersionIndex (FK)
categoryCode
valueText

ObjectByReference
objectByReferenceIdentifier (FK)
objectByRefrenceVersionIndex (FK)

categoryCode

ObjectType
objectTypeIdentifier (FK)
objectTypeVersionIndex (FK)

categoryCode

ObjectVersionAssociationCharacterization
objectVersionAssociationCharacterizationIdentifier

objectVersionAssociationIdentifier (FK)
objectVersionAssociationVersionIndex (FK)
categoryCode
valueText

ObjectVersionAssociation
objectVersionAssociationIdentifier (FK)
objectVersionAssociationVersionIndex (FK)

subjectObjectIdentifier (FK)
subjectObjectVersionIndex (FK)
objectObjectIdentifier (FK)
objectObjectVersionIndex (FK)
categoryCode
relationTypeCode

Object
objectIdentifier

pointerCode

ObjectVersion
objectVersionIdentifier (FK)
objectVersionIndex

categoryCode
descriptionText
name
abbreviatedName

ObjectVersionStructureAssociation
objectVersionStructureAssociationIdentifier

subjectObjectVersionStructureIdentifier (FK)
objectObjectVersionStructureIdentifier (FK)
categoryCode

ObjectVersionStructureDetail
objectVersionStructureDetailIdentifier

objectVersionAssociationIdentifier (FK)
objectVersionAssociationVersionIndex (FK)
objectVersionStructureIdentifier (FK)

ObjectVersionStructure
objectVersionStructureIdentifier

objectVersionIdentifier (FK)
objectVersionIndex (FK)
name
categoryCode

ArchitectureElement
architectureElementIdentifier (FK)
architectureElementVersionIndex (FK)

categoryCode
subcategoryCode

ObjectItem
objectItemIdentifier (FK)
objectItemVersionIndex (FK)

categoryCode
alternateIdentificationText

Figure 4-1: High-level Representation of CADM v1.5

4-4

4.3.2 The CADM v1.5 Subtype Hierarchies
The subtypes under ObjectItem are shown at the entity level in Figure 4-2.

Hierarchies: ObjectItem

IS_CHARACTERIZED_BY_1662

IS_SUBJECT_FOR_1660

IS_OBJECT_FOR_1661

HAS_1653

Feature

Satellite

Ship

Facility

UniformedServiceOrganization

Materiel Organization

ObjectItem

ObjectVersion

Object

ObjectVersionAssociation

ObjectVersionAssociationCharacterization

categoryCode

categoryCode

CategoryCode

categoryCode

Figure 4-2: The ObjectItem Subtype Hierarchy in CADM v1.5

4-5

The subtypes under ObjectType are shown in Figure 4-3.

Hierarchies: ObjectType

IS_CHARACTERIZED_BY_1662

IS_SUBJECT_FOR_1660

IS_OBJECT_FOR_1661

HAS_1653

PersonType

CircuitSwitchType

AntennaType

ShipType

OperationalNetworkNode

OperationalElement

OperationalFacility

EquipmentType

CommunicationFacility

ComputerWorkstationType
RadioType

SwitchType

FacilityType
OrganizationType

MaterielType

ObjectVersion

Object

ObjectVersionAssociation

ObjectVersionAssociationCharacterization

ObjectType

roleCategoryCode

typeCode

RoleCategoryCode

typeCode

CategoryCode

categoryCode

Figure 4-3: The ObjectType Subtype Hierarchy in CADM v1.5

All the remaining, explicitly modeled, CADM v1.5 entities are part of the subtype hierarchy
under ArchitectureElement. Figure 4-4 shows a partial set of those subtypes.

4-6

Hierarchies: ArchitectureElement

IS_CHARACTERIZED_BY_1662
IS_SUBJECT_FOR_1660

IS_OBJECT_FOR_1661

HAS_1653

DataReference

DiscoveryMetadata

CapabilityCategory

CommunicationLinkType CommunicationCircuitType

CommunicationCircuit

CostBasis

CommunicationMeans

CommunicationSpaceUseClass

BattlefieldFunctionalAreaProponent

Country

ActivityModelInformationElementRole

CommunicationMedium

Document

Architecture

Capability

Action

Agreement

ArchitectureElement

ObjectVersion

Object

ObjectVersionAssociation

ObjectVersionAssociationCharacterization

categoryCode

CategoryCode

PARTIAL VIEW

Total Number: 101

Figure 4-4: A Partial View of the ArchitectureElement Subtype Hierarchy in CADM v1.5

4.4 USE OF THE CADM V1.5 SUPERSTRUCTURE
4.4.1 Creation of the Physical Schema in a Relational Database

Both the entities in the superstructure as well as those in the hierarchies shown in Figures 4-
2, 4-3, and 4-4 above are specified in CADM v1.5 at a level of detail sufficient to generate the
physical schema within a relational database management system (RDBMS). Figure 4-5 shows
the “physical” view of the CADM v1.5 superstructure corresponding to the entity-attribute view
shown in Figure 4-1.

4-7

OBJ_BY_REF_CHAR
OBJ_BY_REF_CHAR_ID: numeric(20)

OBJ_BY_REF_ID: numeric(20)
OBJ_BY_REF_VERS_IX: numeric(20)
OBRC_CAT_CD: varchar(7)
OBRC_VAL_TX: varchar(4000)

OBJ_BY_REF
OBJ_BY_REF_ID: numeric(20)
OBJ_BY_REF_VERS_IX: numeric(20)

OBR_CAT_CD: varchar(4)

OBJECT_TYPE
OBJ_TYPE_ID: numeric(20)
OBJ_TYPE_VERS_IX: numeric(20)

OT_CAT_CD: numeric(1)

OBJ_VERS_ASSOC_CHAR
OBJ_VERS_ASSOC_CHAR_ID: numeric(20)

OBJ_VERS_ASSOC_ID: numeric(20)
OBJ_VERS_ASSOC_VERS_IX: numeric(20)
OVAC_CAT_CD: numeric(4)
OVAC_VAL_TX: varchar(4000)

OBJ_VERS_ASSOC
OBJ_VERS_ASSOC_ID: numeric(20)
OBJ_VERS_ASSOC_VERS_IX: numeric(20)

SUB_OBJ_ID: numeric(20)
SUB_OBJ_VERS_IX: numeric(20)
OBJ_OBJ_ID: numeric(20)
OBJ_OBJ_VERS_IX: numeric(20)
OVA_CAT_CD: varchar(3)
OVA_REL_TY_CD: varchar(14)

OBJECT
OBJ_ID: numeric(20)

OBJ_PTR_CD: varchar(4)

OBJ_VERS
OBJ_VERS_ID: numeric(20)
OBJ_VERS_IX: numeric(20)

OV_CAT_CD: numeric(1)
OV_DSCR_TX: varchar(4000)
OV_NM: varchar(250)
OV_ABBR_NM: varchar(250)

OBJ_VERS_STRCT_ASSOC
OBJ_VERS_STRCT_ASSOC_ID: numeric(20)

SUB_OBJ_VERS_STRCT_ID: numeric(20)
OBJ_OBJ_VERS_STRCT_ID: numeric(20)
OVSA_CAT_CD: numeric(2)

OBJ_VERS_STRCT_DET
OBJ_VERS_STRCT_DET_ID: numeric(20)

OBJ_VERS_ASSOC_ID: numeric(20)
OBJ_VERS_ASSOC_VERS_IX: numeric(20)
OBJ_VERS_STRCT_ID: numeric(20)

OBJ_VERS_STRCT
OBJ_VERS_STRCT_ID: numeric(20)

OBJ_VERS_ID: numeric(20)
OBJ_VERS_IX: numeric(20)
OVS_NM: varchar(255)
OVS_CAT_CD: numeric(1)

ARCH_ELEM
ARCH_ELEM_ID: numeric(20)
ARCH_ELEM_VERS_IX: numeric(20)

AE_CAT_CD: numeric(2)
AE_SUBCAT_CD: char(4)

OBJECT_ITEM
OBJ_ITEM_ID: numeric(20)
OBJ_ITEM_VERS_IX: numeric(20)

OI_CAT_CD: numeric(1)
OI_ALT_ID_TX: varchar(255)

Figure 4-5: Physical Specification of the CADM v1.5 Superstructure Components

Each of the boxes represents a table in the physical schema of the target RDBMS, and each
of the entries in the tables corresponds to columns in the respective tables. The transformation of
the graphical representation into the actual schema is accomplished by generating an SQL script
that expresses the Integrated Definition for Data Modeling (IDEF1X) notation into
corresponding statements of the Data Definition Language (DDL) of the target RDBMS. When
such a script is executed, the RDBMS creates a data structure that corresponds to the table in
question. Figure 4-6 shows the three stages described above: (a) IDEF1X physical specification,
(b) SQL Script, and (c) Instantiated table using the RDBMS MySQL.

4-8

CADM 1.5 — Physical Schema

+------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------+------+-----+---------+-------+
| OBJ_ID | decimal(20,0) | NO | PRI | | |
| OBJ_PTR_CD | varchar(4) | YES | | NULL | |
+------------+---------------+------+-----+---------+-------+

OBJ
OBJ_ID: numeric(20) NOT NULL

OBJ_PTR_CD: varchar(4) NULL

DROP TABLE IF EXISTS OBJ;
CREATE TABLE OBJ (

OBJ_ID NUMERIC(20) NOT NULL,
OBJ_PTR_CD VARCHAR(4)

)ENGINE=InnoDB;
ALTER TABLE OBJ ADD PRIMARY KEY(
OBJ_ID);

IDEF1X

SQL Script

OBJ Table in MySQL

Figure 4-6: Transformation Stages for RDBMS Use

4.4.2 Data Loading

Once the physical tables have been created, one can load data in them. This is accomplished
through the use of data manipulation language (DML) statements. Figure 4-7 shows how two
new instances of Object are created in MySQL via the INSERT statement. The column OBJ_ID
contains the value required for the RDBMS engine to retrieve the data. This value, the so-called
record key, must be, at a minimum, unique within each table. If one uses enterprise-wide
globally unique identifiers, then no two record keys are the same for any table.

Figure 4-7 also shows that in CADM v1.5 that when one creates an instance of Object, one
can already indicate the class of Object that it corresponds to. The example shows the creation of
a record corresponding to Architecture and another corresponding to Document, both subtypes of
ArchitectureElement.

All records in an RDBMS that implement CADM v1.5 must start as entries in the table OBJ,
since all entities in CADM v1.5 depend directly or through one or more intermediate entities on
the entity Object.

4-9

CADM 1.5 — Instantiation

INSERT INTO OBJ(OBJ_ID,OBJ_PTR_CD) VALUES
(337,'E038'),
(876,'E148');

mysql> SELECT * FROM OBJ;
+--------+--------------------+
| OBJ_ID | OBJ_PTR_CD |
+--------+--------------------+
| 337 | E038[Architecture] |
| 876 | E148[Document] |
+--------+--------------------+

Figure 4-7: Creation of Records in CADM v1.5

4.4.3 Versioning
As the logical view of the CADM v1.5 depicted in Figure 4-8 shows, every instance of

Object has a one-to-many relationship to ObjectVersion.4 This allows for the retention of the
“semantic identity” of an instance of Object while, at the same time, allowing for modifications
in the values of the attributes of said instance. One can think of this as analogous to the fact that
for a person its social security number does not change even though its weight may change.

In CADM v1.5, if one needs or wishes to keep track of changes in an instance of Object
while retaining any previous information linked to the same instance, every modification is
treated as a new version of the same Object.

Figure 4-8 shows a notional case pertaining to the instance of Object with OBJ_ID = 337.
The table OBJ_VERS shows two entries both linked to the same record belonging to the class of
Architecture. In the second version of it, there is a change in the name, but otherwise everything
else is meant to be the same. Because the key of the table OBJ_VERS is a composite key made
up of the concatenation of the values of OBJ_ID and OBJ_VERS_IX, the records can be
distinguished by the RDBMS engine when executing a SELECT statement.

4.4.4 Expressing Relationships in CADM v1.5 – Mapping of Foreign Keys
With the exception of the 10 one-to-many relationships among the entities of the CADM

v1.5 superstructure, shown in Figure 4-5, all other relationships in the model are subtype
relationships.

To link an instance of Object to another instance of Object in CADM v1.5, one must use
ObjectVersionAssociation. There are three cases. The first is when the relationship between the

4 The values of the categoryCode in ObjectVersion are: 1 = ObjectItem; 2 = ObjectType; 3 = ObjectVersionAssociation; 4 =

ArchitectureElement; 5 = ObjectByReference

4-10

instances of Object has a fixed semantic meaning and there is no further characterization of the
relationship. For example, an instance of CommunicationMedium may be linked to an instance of
InformationExchangeRequirement with the fixed role “is used to transport.”

In previous versions of the model, this was expressed adding an extra column in the table
InformationExchangeRequirement to capture the key of the corresponding CommunicationMedium
serving that purpose. To capture this fact in CADM v1.5, one first creates in Object and
ObjectVersion both the corresponding entries of the CommunicationMedium and
InformationExchangeRequirement, as well as an instance of ObjectVersionAssociation. The tables
below show a notional sample instantiation.

CADM 1.5 — Versioning

OBJ_VERS
+-------------+-------------+-----------------+---------------------------+
| OBJ_VERS_ID | OBJ_VERS_IX | OBJ_VERS_CAT_CD | OBJ_NM |
+-------------+-------------+-----------------+---------------------------+
337	1	4	Transcom Communications
			Systems Architecture
337	2	4	Transcom Communications
			Systems Architecture/B
+-------------+-------------+-----------------+-------------+-------------+

OBJ
+--------+--------------------+
| OBJ_ID | OBJ_PTR_CD |
+--------+--------------------+
| 337 | E038[Architecture] |
| 876 | E148[Document] |
+--------+--------------------+

Figure 4-8: Versioning of Records in CADM v1.5

Object

objectIdentifier pointerCode
315 E102[CommunicationMedium]
316 E234[IER]
317 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

315 1 Satellite Link AFX-176 4[ArchElem]
316 1 Node A102 to Node A345 4[ArchElem]
317 1 CommMedium for IER 316 3[OVA]

As stated above, since there are no migrated keys in CADM v1.5 to relate the instance of
CommunicationMedium to the instance of InformationExchangeRequirement, one now must use
the ObjectVersionAssociation table. The instance table below shows the entries required.

4-11

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

317 1 315 1 316 1 999 E102-R-E234

Note that the following convention is used: The parent of the relationship (in the example
shown above, this is the instance of CommunicationMedium) must be entered as the subject in the
ObjectVersionAssociation table. The child entity (the instance of InformationExchange-
Requirement) in the relationship must be entered as the object in the ObjectVersionAssociation
table.

It should also be noted that all relationships of this type, i.e., the equivalent of all the foreign
keys modeled in CADM v1.03, have the categoryCode = 999.5 The meaning of the relationship is
stated via the relationTypeCode. The code E102-R-E234 stands for “is used to transport.”6

At present the values of the relationTypeCode in ObjectVersionAssociation are those defined in
CADM v1.03 with the augmentation required to support the net-centric requirements of DoDAF
v1.5.

4.4.5 Expressing Associative Entities in CADM v1.5
The second case of relationships involving foreign keys is a generalization of the first case

discussed in the preceding section. The main difference is that the semantics of the relationship
are augmented through additional attribution. For example, the relationship may have a begin
and an end date; it may also have a textual description of the rationale for establishing such a
relationship, etc. An example of such a case in CADM v1.5 is the relationship between
organizations and mission areas.

In CADM v1.5, all the entities that serve the purpose of relating instances of one type of
Object to another type of Object are not modeled explicitly, i.e., there are no entities
corresponding to the associative entities that existed in CADM v1.03. Instead, there is a single
data structure, namely, ObjectByReference, which allows the instantiation of this type of entity.

Therefore, to express the construct A—related to—AB—related to—B one needs to establish
two entries in the ObjectVersionAssociation table, one for the A—related to—AB part and
another for the B—related to—AB half. In addition, both entries must use the instance of
ObjectByReference corresponding to AB as their object. The instance tables below show how one
handles the case of an organization supporting a mission area.

As before one must begin by creating all the instances of Object required, namely, the
instances of Organization and MissionArea, the two instances of ObjectVersionAssociation that
handle the relationships, and an instance of ObjectByReference for the augmented
characterization of the association, that, in CADM v1.03, was the entity
OrganizationMissionArea.

5 In addition to the value ‘999’ the categoryCode can also take the value ‘997’ which stands for the generic association of “OTHER”. This value

can be used to state that there is a linkage between instances of ObjectVersion but without stating what the linkage means. See Section 4.4.7
below on the use of this type of association for the creation of structures and lists in CADM 1.5.

6 There is a difference between CADM 1.03 and CADM 1.5 regarding the cardinality of this type of relationships. In the former, instances of
the child entity (e.g., InformationExchangeRequirement) could be related only to one instance of the parent entity (e.g.,
CommunicationMedium). In CADM 1.5 instances of the child entity can be related to more than one instance of the parent entity. In other
words, they are implicitly converted into many-to-many relationships. If strict conformance to the original semantics is needed it must be
implemented at the application level.

4-12

Object
objectIdentifier pointerCode

415 E312[MissionArea]
416 E432[Organization]
417 E678[OVA]
418 E678[OVA]
419 E679[OBR]

ObjectVersion
*Identifier *Index name categoryCode

415 1 Future Land Combat 4 [ArchElem]
416 1 10th Infantry Division 4 [ArchElem]
417 1 10th ID-FLC Support 3 [OVA]
418 1 FLC Supported by 10th ID 3 [OVA]
419 1 OrgMA-419 5 [OBR]

Once these records are created, one can relate the instances corresponding to the Organization
and the MissionArea to the instance of ObjectByReference corresponding to
OrganizationMissionArea.

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

417 1 415 1 419 1 999 E312-R-E443
418 1 416 1 419 1 999 E432-R-E443

The relationTypeCode values used have the following meanings:

E312-R-E443 = is supported by
E432-R-E443 = supports

Lastly, one needs to instantiate the ObjectByReference corresponding to
OrganizationMissionArea so that the augmented attribution for this relationship can be
expressed. The tables below show the entries in ObjectByReference and
ObjectByReferenceCharacterization.

ObjectByReference
*Identifier *Index categoryCode

419 1 E443[OrganizationMissionArea]

ObjectByReferenceCharacterization

*Identifier OBR
Identifier

OBR
Index

OBRC
categoryCode

OBRC
valueText

665 419 1 E443.A01 1[PRIMARY]
667 419 1 E443.A02 SECDEF Memo 9876-A
669 419 1 E443.A03 20070901000000.000
671 419 1 E443.A04 1[HL OP READINESS]

The categoryCode values used have the following meanings:

E443.A01 = PriorityCode
E443.A02 = ReasonText
E443.A03 = RequiredReadinessCalendarDatetime
E443.A04 = RequiredReadinessCode

4-13

Reading these tables, one can see that, for the link between the instance of Organization
corresponding to the 10th Infantry Division and the instance of MissionArea corresponding to
“Future Land Combat,” the priority is ranked as “primary,” the purpose to support this mission
area is provided in the SECDEF Memo 9876-A, and that the ability to support this mission area,
at a high level of operational readiness, is expected to be in place by September of 2007.

Note that in addition to linking the two parent entities, the associative entities can be both the
source as well as the recipient of additional relationships. In CADM v1.03, one could establish a
relationship between Guidance and the associative entity OrganizationMissionArea. In CADM
v1.5, this is also possible, as it would be simply another instance of ObjectVersionAssociation,
and the instantiation would follow the same pattern as the one discussed in Section 4.4.4 above.

4.4.6 Expressing Double Associative Relationships in CADM v1.5
The third case of relationships involving foreign keys is a specialization of the second case

discussed in the preceding section. Whereas in the generic case one has A—related to—AB—
related to—B, in the specialization both parents are the same (A—related to—A-Assoc—related
to—A) and the roles of the two instances of the parent entity are also fixed, i.e., they are either
parent-child, or ordinate-subordinate.7

In CADM v1.5, the various names given to the role of the parent entity have been normalized
to the role of subject in the entries of the ObjectVersionAssociation table, and, similarly, the role
names of the child entity now all map to the role of object. As a result, there is no need to have
two records in ObjectVersionAssociation to express relationships of the type A—related to—A-
Assoc—related to—A.

For the reasons given above, double associative entities are treated differently from the
regular associative entities. Specifically, the categoryCode in ObjectVersionAssociation has a
value that corresponds to the name of the original CADM v1.03 double associative entity, and
the relationTypeCode is always set to NULL.8

Where the double associative entity has augmented characterization, this is captured via
ObjectVersionAssociationCharacterization, which works in the same way as the
ObjectByReferenceCharacterization discussed in the preceding section.

The following instance tables show a notional case for how to relate an instance of
Organization to another instance of Organization, which in CADM v1.03 corresponded to entries
in the table OrganizationAssociation.9

As before, one must start by creating the entries in Object and ObjectVersion.

7 Double-associative entities of the type A-Assoc are essential for the description of taxonomic and hierarchical decompositions. In CADM 1.03

there were 49 such entities, ranging from OrganizationAssociation, FacilityAssociation to ProcessActivityAssociation and
TechnicalInterfaceAssociation. They are now expressible through ObjectVersionAssociation.

8 Currently, the categoryCode values reflect the CADM 1.03 set of double associative entities. The suggested use of NULL is only an indication
that there should be no entry in the relationTypeCode when expressing double associations in CADM 1.5 through ObjectVersionAssociation.

9 Throughout this document the following convention is used: entities which are expressed in CADM 1.5 through ObjectByReference or
ObjectVersionAssociation are shown in italics. Where they are identical to CADM 1.03 entities the text will normally say so. Entities that
are explicitly modeled in CADM 1.5 are shown in bold face.

4-14

Object
objectIdentifier pointerCode

815 E432[Organization]
816 E432[Organization]
817 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

815 1 1st Army Logistics BN 1 [OI]
816 1 82nd Airborne Division 1 [OI]
817 1 TACON-Link 01 3 [OVA]

The linkage between the two instances of Organization is done through
ObjectVersionAssociation as follows:

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

categoryCode relationType
Code

817 1 816 1 815 1 E436
[OrgAssoc]

NULL

Finally, the augmented semantics of relationships among instances of Organization is
expressed by instantiating the respective entries in the ObjectVersionAssociationCharacterization
table as shown below.

ObjectVersionAssociationCharacterization
*Identifier OVA

Identifier
OVA
Index

OVAC
categoryCode

OVAC
valueText

965 817 1 E436.A01 2[OPS SPECIFIC]
967 817 1 E436.A03 20050101000000.000
969 817 1 E436.A04 20081231000000.000
971 817 1 E436.A05 2[NO EFFECT]
973 817 1 E436.A06 10[LOG SERVICES]

The categoryCode values used have the following meanings:

E436.A01 = ConfigurationCategoryCode
E436.A03 = EffectiveCalendarDatetime
E436.A04 = EndCalendarDatetime
E436.A05 = ReinforcementCategoryCode
E436.A06 = TypeCode

Reading these tables, one can see that, for the link between the instance of Organization
corresponding to the 82nd ABN Division and the instance of Organization corresponding to 1st
Army Logistics Bn, the configuration is listed as “operations specific” (as opposed to a baseline
or garrison configuration), the begin and end dates of the association are 01 JAN 05 and 31 DEC
08, respectively, there is no augmentation effect caused by this relationship, and the type of
relationship is one in which the subject (1st Army Logistics Bn) provides logistics services to the
object (82nd ABN Division).

As with all the other coded domains discussed before, the set of valid values currently
contained in CADM v1.5 is identical to the one present in CADM v1.03, plus the additional
values identified in DoDAF v1.5 for supporting NCO.

4-15

4.4.7 Disambiguation of ObjectVersionAssociation Instances in CADM v1.5
The preceding sections have discussed the way in which the new set of CADM v1.5

superstructure entities enable the capture of instances of architecture-relevant data and the
relations among them.

As shown in CADM v1.5, once the instances of Object and ObjectVersion are created, the
bulk of the work is done through the ObjectVersionAssociation entity. Storing large numbers of
DoDAF architecture artifacts in a CADM v1.5-conformant repository will result in a very large
set of ObjectVersionAssociation instances.

Traversing this table every time one needs or wants to extract information about the pairs
associated or the characteristics of their associations can lead to time-consuming and complex
queries.

CADM v1.5 contains a set of entities designed to create data subsets of associations
contained in the ObjectVersionAssociation table so that they can be disambiguated and more
efficiently retrieved. The first entity is ObjectVersionStructure. This entity can link to a given
instance of ObjectVersion one or more sets of data that may have the nature of either tree-like,
hierarchical decompositions or just simple lists.

Each instance of ObjectVersionStructure is uniquely identified and can be named to provide a
means for separating it from any other list or structure related to the instance of ObjectVersion.

The actual composition of the structure or list is done via the entity
ObjectVersionStructureDetail. As shown in Figure 4-8, this entity simply collects the pertinent
associations that one wishes to document for the specific instance of ObjectVersionStructure.

The tables below show an example of how this part of the CADM v1.5 can be used. This
case involves a hierarchical decomposition as it may exist, for example, in an OV-4 diagram
having the generic form shown in Figure 4-9 below.

A

B1 B2 B3

C

D1 D2 D3

Figure 4-9: Notional Example of Organization associations for an OV-4 type of Architecture Product

4-16

As before, we start with the creation of the required instances in Object and ObjectVersion
and build the entries in the ObjectVersionAssociation table.

Object
objectIdentifier pointerCode

515[A] E432 [Organization]
516[B1] E432 [Organization]
517[B2] E432 [Organization]
518[B3] E432 [Organization]
519[C] E432 [Organization]

520[D1] E432 [Organization]
521[D2] E432 [Organization]
522[D3] E432 [Organization]

857 E678 [OVA]
858 E678 [OVA]
859 E678 [OVA]
860 E678 [OVA]
861 E678 [OVA]
862 E678 [OVA]
863 E678 [OVA]

ObjectVersion
*Identifier *Index name categoryCode

515 1 A 1 [OI]
516 1 B1 1 [OI]
517 1 B2 1 [OI]
518 1 B3 1 [OI]
519 1 C 1 [OI]
520 1 D1 1 [OI]
521 1 D2 1 [OI]
522 1 D3 1 [OI]
857 1 A to B1 link 3 [OVA]
858 1 A to B2 link 3 [OVA]
859 1 A to B3 link 3 [OVA]
860 1 B1 to C link 3 [OVA]
861 1 C to D1 link 3 [OVA]
862 1 C to D2 link 3 [OVA]
863 1 C to D3 link 3 [OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

categoryCode relationType
Code

857 1 515[A] 1 516[B1] 1 E436[OrgAssoc] NULL
858 1 515[A] 1 517[B2] 1 E436[OrgAssoc] NULL
859 1 515[A] 1 518[B3] 1 E436[OrgAssoc] NULL
860 1 516[B1] 1 519[C] 1 E436[OrgAssoc] NULL
861 1 519[C] 1 520[D1] 1 E436[OrgAssoc] NULL
862 1 519[C] 1 520[D2] 1 E436[OrgAssoc] NULL
863 1 519[C] 1 520[D3] 1 E436[OrgAssoc] NULL

4-17

The next step is to create the instance of ObjectVersionStructure that will collect one or more
of the decompositions or lists that one wants to assign to a given instance of ObjectVersion. In
this example, the ObjectVersionStructure is for the instance of ObjectVersion corresponding to the
organization A in Figure 4-9 above.

ObjectVersionStructure
*Identifier OV

Identifier
OV

Index
Name categoryCode

157 515[A] 1 Draft OV-4 High Level 2[Structure]

After the creation of the ObjectVersionStructure, one can specify the content by populating
the ObjectVersionStructureDetail table as shown below.

ObjectVersionStructureDetail
*Identifier OVA

Identifier
OVA
Index

OVS
Identifier

257 857 1 157
258 858 1 157
259 859 1 157
260 860 1 157
261 861 1 157
262 862 1 157
263 863 1 157

Inspection of the table indicates that for the structure with ID = 157 there are 7
OrganizationAssociations (specified in the ObjectVersionAssociation table) linked to it. Going
back one level, one can see this structure is the one declared for the instance of ObjectVersion
corresponding to organization A, the root of the notional OV-4 shown in Figure 4-9 above. Use
of the ObjectVersionStructure and ObjectVersionStructureDetail, therefore, makes it easier to
understand the relationships among the objects in the data store, and to write specific queries to
retrieve data from the ObjectVersionAssociation table.

If additional relationships are established between organization A and other organizations,
the structure created in the example above would allow the user to select those with the specific
meaning of being part of a high level draft OV-4, as opposed to being part of some other type of
organization association specified for organization A.

As mentioned in footnote 7 of Section 4.4.4 above, one can set the categoryCode = ‘997’ in
order to capture a generic type of relationship (‘OTHER’) in ObjectVersionAssociation. This kind
of relationship simply states that there is a linkage between the instances without further
characterization.

The following uses may be of interest:

1) In repository management where one may want to keep track of all the records
that make up an entire architecture so that it can be efficiently retrieved from the
repository as a single data set.

2) To create lists. This may be the case when an organization is interested in tracking
a bundle of Object instances either for administrative or other purposes.

3) To create particular information exchange artifacts tailored to satisfy specific
types of user information requests.

4-18

4) To perform architecture analysis. The generic relationship code can be used to
create associations that reflect a particular perspective on the architecture data.
For example, one can create an architecture view that presents the content of a
given architecture from the perspective of the UJTL taxonomy by linking all the
organizations, systems, SOA services, etc., that are connected to the UJTL tasks
specified in that architecture.

4.5 SUMMARY
The CADM v1.5 superstructure discussed in the preceding section supports all the kinds of
relationships specified in the IDEF1X notation that result in a foreign key. Figure 4-10 shows
the graphical representation for these relationships that are now handled via the
ObjectVersionAssociation entity in CADM v1.5.

Figure 4-10: Summary Depiction of IDEF1X Notation for Relationships that Result in a Foreign Key

The following things should be noted regarding the modeling approach employed in CADM
v1.5 when dealing with these kinds of relationships.

1) The cardinality of the relationships is not explicitly stated in CADM v1.5.
Because relationships are instantiated only when there is a need to do so, CADM
v1.5 does not restrict the number of relationships that a given instance of Object

4-19

can have. If an architecture product does not need to establish a relationship,
there is no entry in the ObjectVersionAssociation table. In contrast, CADM v1.03
contains additional columns for all the foreign keys in each one of the tables that
may potentially instantiate such a relationship.

2) As noted in the sections above, some relationships in CADM v1.03 restricted the
number of instances that could be linked to a given record. Thus, for example, in
CADM v1.03, one can only assign one instance of Guideline to a given record in
OrganizationMissionArea. In CADM v1.5, it is possible to link more than one
instance of Guideline to a record of OrganizationMissionArea. The consequence
of this is that whereas every data set created in conformance to the CADM v1.03
specifications can be mapped to the pertinent structures in CADM v1.05, a data
set that does not impose the same restrictions may not be faithfully translated to a
CADM v1.03-conformant implementation. In other words, the backward
compatibility between CADM v1.03 and CADM v1.5 is assured only in one
direction, namely from the older specification to the new one. A data set built in
CADM v1.5 that does not impose the same cardinality restrictions cannot be
expressed using CADM v1.03 structures.

3) Finally, there is no differentiation in CADM v1.5 between so-called “identifying
relationships” (a.k.a. mandatory relationships, or no nulls allowed) and “non-
identifying relationships” (a.k.a. optional relationships, or nulls allowed). Again,
if there is no need to create the relationship, there will be no entry in the
ObjectVersionAssociation table. Or, put in a different way, in CADM v1.5, all
relationships are treated as optional. Because the relationships are not part of the
model structure but are modeled as data entries in the ObjectVersionAssociation
table, the model does not enforce any creation of a relationship. If a relationship
must exist, its creation has to be enforced at the application level.

An additional type of relationship specified in IDEF1X is the subtype relationship. This type of
relationship is similar to the notion of a generalization in object oriented modeling languages
such as Unified Modeling Language (UML). Figure 4-11 shows the corresponding graphical
representation of the two kinds of subtype notation that exist in IDEF 1X.

GENERIC PARENT

CAT-1 CAT-2

category discriminator

Each category entity
represents a subset of the
instances of the generic parent
and inherits the atributes and
relationships of that parent.

Incomplete
Not all categories
shown

Complete
All categories shown

Figure 4-11: Summary Depiction of IDEF1X Notation for Relationships that Result in a Foreign Key

4-20

The following things should be noted regarding the modeling approach employed in CADM
v1.5 when dealing with subtype relationships.

1) The subtype notation in IDEF1X is purely a logical notation. From the point of
view of the key structure, it is equivalent to an identifying Z-relationship, with the
added constraint that the subtypes must be mutually exclusive. The latter
constraint is only enforceable at the application level. In other words, without
additional code, an INSERT statement relates the same instance of entity A to its
subtype B1, and its subtype B2 will be executed without error by most, if not all,
RDBMS engines.

2) In CADM v1.5, subtype relationships that are not explicitly contained in the
model (i.e., where the subtype is an instance of ObjectByReference) are handled in
the same way as any of the other relationships shown in Figure 4-10 above. In
other words, to establish a subtype relationship, one creates the entries in Object
and ObjectVersion for the supertype and the subtype as well as the instance for
ObjectVersionAssociation. The supertype always has the role of subject and the
subtype the role of object. The categoryCode must be set equal to ‘999,’ and the
relationTypeCode has the value for the specific subtyping relationship. The
notation employed differs from the other codes shown in the preceding sections,
whereas a foreign key relationship has “R” as part of the code (e.g., E312-R-
E443), a subtyping relationship has an “S” (e.g., E047-S-E043).

4.5.1 Mapping Business Rules
All the mapping Business Rules for expressing CADM v1.03 data sets via the CADM v1.5 is

provided in the document “MappingRules CADM 103-CADM 15.html,” distributed in electronic
form with the DoDAF v1.5 volumes. The document is also available at the DARS site
(https://dars1.army.mil/IER/index.jsp).

The applicable coded domains are also provided in the “CADM v1.5 Domain
Specification.doc” document.

4.6 CADM V1.5 SUPPORT FOR DODAF PRODUCTS
The richness and expressiveness of an information model is a function of two components,

(a) the number and kind of relationships that are defined among the entities of the information
model and (b) the robustness of the entity attribution.

The preceding section discussed the first component. That section showed how all the kinds
of relationships that existed in CADM v1.03 continue to be supported in CADM v1.5. That
section also showed that CADM v1.5 provides for additional mechanisms to disambiguate data
sets, as well as means to create ad hoc relationships that go beyond what CADM v1.03 specified.
Four potential uses of the latter were also presented therein.

This section addresses the second component, namely, the entity attribution specified in
CADM v1.5. The description will be done in the context of the architecture products. DoDAF
v1.5 Volume II contains the description of all the entities necessary to capture the data
underlying each of the DoDAF products. The following section will follow the same approach.
The main difference is that now the attribution will be explicitly discussed, and instance table
examples will be provided.

4-21

4.6.1 CADM v1.5 Support for Overview and Summary Information (AV-1)

4.6.1.1 Product Definition
As stated in DoDAF v1.5 Volume II, the purpose of AV-1 is to provide sufficient textual

information to enable a reader to select one architecture from among many to read in more detail
executive-level summary information in a consistent form that allows quick reference and
comparison among architectures. AV-1 includes assumptions, constraints, and limitations that
may affect high-level decision processes involving the architecture.

AV-1 serves two additional purposes. In the initial phases of architecture development, it
serves as a planning guide. Upon completion of an architecture, AV-1 provides summary textual
information concerning the architecture.

The information pertinent to an architecture is captured in CADM v1.5 in the entity
Architecture, and the DoDAF products contained in it are represented as instances of Document.
Both these entities are subtypes of ArchitectureElement. Figure 4-12 shows the specification of
these data structures.

categoryCode
Document

documentIdentifier (FK)
documentVersionIndex (FK)

approvalCalendarDate
architectureProductCategoryCode
architectureProductSubcategoryCode
categoryCode
completenessCategoryCode
dataTypeCode
creationCalendarDate
labelText
notationText
originatorName
promulgationCode
publicationCalendarDate
remarkText
routingCode
temporalScopeCode
typeCode
universalResourceLocatorText
versionIdentifierText

Architecture
architectureIdentifier (FK)
architectureVersionIndex (FK)

commandLevelCode
completionCalendarDate
completionStatusCode
contextText
databaseName
effectiveEndCalendarDate
effectiveStartCalendarDate
granularityCode
implementabilityCharacterizationCode
levelCode
objectiveText
purposeConstraintText
purposeText
registrationIdentifierText
releaseCalendarDate
scopeText
summaryDescriptionText
systemArchitectureApplicabilityStatusCode
temporalScopeCode
useTypeCode
viewCategoryCode
viewSubcategoryCode
viewpointName
versionIdentifierText
warehouseIdentifierText

ObjectVersion
objectVersionIdentifier (FK)
objectVersionIndex

categoryCode
descriptionText
name
abbreviatedName

Object
objectIdentifier

pointerCode

ObjectVersionAssociation
objectVersionAssociationIdentifier (FK)
objectVersionAssociationVersionIndex (FK)

subjectObjectIdentifier (FK)
subjectObjectVersionIndex (FK)
objectObjectIdentifier (FK)
objectObjectVersionIndex (FK)
categoryCode
subcategoryCode
relationTypeCode

ArchitectureElement
architectureElementIdentifier (FK)
architectureElementVersionIndex (FK)

categoryCode
subcategoryCode

Z Z

Z Z

HAS_1653
IS_OBJECT_FOR_1661

IS_SUBJECT_FOR_1660

Figure 4-12: Attribute-Level Depiction of Document and Architecture Data Structures in CADM v1.5

4-22

4.6.1.2 High-Level Description
Figure 4-13 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an AV-1.

AV-1

associated toArchitecture

Node

FunctionalArea

Information
Asset

Guidance

Information
Element

Mission Task

Operational
Scenario

Action

Figure 4-13: High-Level Depiction of CADM v1.5 Data Structures for AV-1 Representation

Each AV-1 is specified by use of (1) Architecture, its association to other types of
architectures (operational, systems and services, and technical) using ObjectVersionAssociation
with categoryCode = E041 [ARCHITECTURE-ASSOCIATION] and instances of ObjectByReference
corresponding to the CADM v1.03 entity ArchitectureFinding (together with subtypes for issues,
constraints, impacts, and recommendations); (2) the linkages to Mission, OperationalScenario,
Action, and System; together with (3) associations that relate a specific Architecture to other data
structures such as Agreement, Document, FunctionalArea, Node, Action, Task, and
InformationTechnologyRequirement.10

4.6.1.3 CADM v1.5 Instantiation
Figure 4-14 shows the template for AV-1 content. An example of the instantiation of a

record in the Architecture table that captures AV-1 data along the lines of the template is shown
below the figure.

10 For a complete list of all the possible associations supported both in CADM 1.03 and CADM 1.5 see the

“MappingRules CADM 103-CADM 15.html” document.

4-23

Figure 4-14: Summary Depiction of AV-1 Content

Object
objectIdentifier pointerCode

20000021 E038[Architecture]

ObjectVersion
*Identifier *Index name description

Text
categoryCode

20000021 1 Combat
Identification
Architecture

Includes Phase I (Air-to-
Surface and Surface-to-
Surface) and Phase II (Air-to-
Air and Surface-to-Air)
products for Joint Staff J8,
OUSD(AT&L), and
ASD(NII)C3.

4[ArchElem]

ArchitectureElement

*Identifier *Index categoryCode subcategoryCode
20000021 1 E038 NULL

Architecture
*Identifier *Index completion

CalendarDate
summary

DescriptionText
objective

Text
20000021 1 20040213 A significant number (34%)

of the 2007 As-Is critical
gaps can be addressed by
accelerated deployment of
existing systems; may
achieve FOC by 2007 if
begun immediately.

Provide (1) a future joint CID
vision and operational concept;
(2) integrated operational and
systems architectural views in
accordance with the DoD AF;
and (3) a capabilities roadmap
and investment strategy (CRIS)
for future CID capabilities.

4-24

Architecture (Cont’d)
scopeText contextText purposeText purposeConstraintText

The integrated
CID
architecture
addresses all
four operating
environments
identified in the
CID CRD—
surface-to-
surface (S-S),
air-to-surface
(A-S), air-to-air
(A-A), and
surface-to-air
(S-A). First
priority was
given to S-S
and A-S.

Description of an
analytic
methodology
specifically
developed to use
operational and
systems
architectures as a
basis for
identifying
capability gaps
and shortfalls and
potential system
solutions to
address critical
capability needs.
Includes
examples of …

1. Identification of “high-
urgency” capability gaps: (a)
by individual platform and
platform class; and (b) by
operating environment/
mission area.
2. Identification of
improvement options to
directly address “high-
urgency” capability gaps.

The integrated CID architecture
addresses all four operating
environments identified in the CID
Capstone Requirements Document
(CRD)—surface-to-surface (S-S),
air-to-surface (A-S), air-to-air (A-A),
and surface-to-air (S-A). First priority
was given to S-S and A-S since
historically most fratricide incidents
have occurred in these two
environments. IDA completed the
development and coordination of S-
S and A-S architecture and CRIS
products in 2002. Additionally, IDA
identified high-priority, high-payoff
CID technology and system
investments to address critical CID
capability shortfalls for those two
operating environments. IDA
completed the development of CID
architecture and CRIS product for
the A-A and S-A operating
environments in 2003.

Architecture (Cont’d)

temporal
ScopeCode

view
TypeCode

levelCode completion
StatusCode

useTypeCode view
PointName

granularity
Code

1 (As Is) 1
(Operational)

1
(Enterprise)

2 (Draft) 9 (Other) Designer 3 (Operational)

Architecture (Cont’d)

effective
Start

Calendar
Date

effective
End

Calendar
Date

implementability
Characterization

Code

command
LevelCode

Version
Identifier

Text

Release
CalendarDate

20011228 20040220 R (Real) 03 (Military
Dept.)

Version 2 20040220

Architecture (Cont’d)

Warehouse
IdentifierText

database|
Name

2001 (DARS, Planned) CADM Example
Architecture
Database

An example of the instantiation of Document describing architecture products related to the
instance of Architecture shown in the preceding tables is shown below.

4-25

Document

DOC_ID
DOC_

ABBRV_
NM

DOC_NM
DOC_

ARCHPROD_
TY_CD

DOC_
PUB_DT

501 AV-1 CID AV-1 CID Overview and Summary 98 20031119

502 AV-2 CID AV-2 CID Integrated Dictionary 7 20031119

503 OV-2 CID OV-2 CID Operational Node
Connectivity Diagram

24 20031119

504 OV-3 CID OV-3 CID Operational Information
Exchange Matrix

16 20031119

506 OV-5 CID OV-5 CID Activity Model 1 20031119

507 OV-7 CID OV-7 CID Logical Data Model 8 20031119

508 SV-1 CID SV-1 CID Systems Interface
Description

39 20031119

509 SV-2 CID SV-2 CID Systems Connectivity
Diagram

35 20031119

510 SV-3 CID SV-3 CID Systems-Systems Matrix 40 20031119

512 SV-5 CID SV-5 CID Operational Activity to
Systems Function Traceability Matrix

38 20031119

514 SV-7 CID SV-7 CID Systems Performance
Parameters Matrix

25 20031119

516 SV-9 CID SV-9 CID Systems Technology
Forecast

41 20031119

517 SV-11 CID SV-11 CID Physical Schema 26 20031119

518 TV-1 CID TV-1 CID Technical Standards Profile 42 20031119

519 TV-2 CID TV-2 CID Technical Standards
Forecast

34 20031119

To express the fact that the instance of Architecture is described by the architecture products
indicated in the preceding Document, table one needs to create the appropriate entries in the
ObjectVersionAssociation using instances of ObjectByReference corresponding to the CADM
v1.03 entity ArchitectureDocument to connect the products to the architecture. For simplicity
only, a pair of those relationships are shown since the method is exactly the same for each of the
rows in the Document table.

Object
objectIdentifier pointerCode

20000021 E038[Architecture]
501 E148[Document]
502 E148[Document]
503 E148[Document]
117 E679[OBR]
118 E679[OBR]
119 E679[OBR]

2522 E678[OVA]
2523 E678[OVA]
2524 E678[OVA]
2525 E678[OVA]
2526 E678[OVA]
2527 E678[OVA]

4-26

ObjectVersion
*Identifier *Index name categoryCode
20000021 1 Combat Identification Architecture 4[ArchElem]

501 1 AV-1 CID Overview and Summary 4[ArchElem]
502 1 AV-2 CID Integrated Dictionary 4[ArchElem]
503 1 OV-2 CID Operational Node Connectivity

Diagram
4[ArchElem]

117 1 ArchitectureDocument (AV-1 in Combat ID Arch) 5[OBR]
118 1 ArchitectureDocument (AV-2 in Combat ID Arch) 5[OBR]
119 1 ArchitectureDocument (OV-2 in Combat ID Arch) 5[OBR]

2522 1 Architecture is documented by AV-1 3[OVA]
2523 1 AV-1 documents Architecture 3[OVA]
2524 1 Architecture is documented by AV-2 3[OVA]
2525 1 AV-2 documents Architecture 3[OVA]
2526 1 Architecture is documented by OV-2 3[OVA]
2527 1 OV-2 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
117 1 E045[ArchitectureDocument]
118 1 E045[ArchitectureDocument]
119 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

2522 1 20000021 1 117 1 999 E038-R-E045
2523 1 501 1 117 1 999 E148-R-E045
2524 1 20000021 1 118 1 999 E038-R-E045
2525 1 502 1 118 1 999 E148-R-E045
2526 1 20000021 1 119 1 999 E038-R-E045
2527 1 503 1 119 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

As depicted in Figure 4-13 above, the AV-1 also documents the organizations, missions,
tasks, actions, etc., that pertain to the architecture. In CADM v1.5, the details of those
relationships are expressed through each of the products, which are described in detail in the
subsequent sections. Direct links between Architecture and any of those data structures, where
defined, can be expressed in the same fashion presented in the previous instance tables through
the use of ObjectVersionAssociation.

The ObjectVersionStructure and ObjectVersionStructureDetail (see discussion above) can also
be employed to capture links that were not supported in CADM v1.03 directly, but which would
facilitate the retrieval of data pertinent to this product.

4.6.1.4 Net-Centric Requirements
The specification of services can be expressed in CADM v1.5 through SoaService, which is

linkable to Architecture through ObjectVersionAssociation using instances of ObjectByReference

4-27

corresponding to ArchitectureSoaService. To do that, one needs to create an instance of
ArchitectureSoaService and link it in the ObjectVersionAssociation table to (a) SoaService with
the relationTypeCode = E682-R-E683 (is cited for) and to (b) Architecture with the
relationTypeCode = E038-R-E683 (cites).

4.6.2 CADM v1.5 Support for Integrated Dictionary (AV-2)

4.6.2.1 Product Definition
As stated in DoDAF v1.5 Volume II, the AV-2 contains definitions of terms used in the

given architecture. It consists of textual definitions in the form of a glossary, a repository of
architecture data, their taxonomies, and their metadata (i.e., data about architecture data),
including metadata for tailored products, associated with the architecture products developed. A
type of metadata is the architecture structured data attributes, possibly expressed in the form of a
physical schema. In this document, architecture data types are referred to as architecture data
elements.

4.6.2.2 High-Level Description
Figure 4-15 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an AV-2.

AV-2

DataDictionary
Specification

consists of

DataDictionary
Element

associated to

DataDictionary

Figure 4-15: High-Level Depiction of CADM v1.5 Data Structures for AV-2 Representation

In CADM v1.5, the DoDAF architecture product AV-2 is an instance of Document with
architectureProductCategoryCode = 7 [DATA-DICTIONARY-SPECIFICATION]. Each AV-2 cites a
specific instance of DataDictionary. The AV-2 document can be linked to the appropriate

4-28

architecture via ObjectVersionAssociation using instances of ObjectByReference corresponding to
the CADM v1.03 the associative entity ArchitectureDocument.

The actual content of the AV-2 is built by linking it to instances of DataDictionary, a subtype
of InformationAsset. The DataDictionary is defined using instances of ObjectByReference
corresponding to the CADM v1.03 entities DataDictionaryElement and
DataDictionaryElementAssociation and linking them via ObjectVersionAssociation. These
entities provide the details needed for a self-contained Glossary of Terms. Where the AV-2 is
considered a database, the schema for the DataDictionary can be specified using the
InformationAsset subtype ConceptualDataModel. The entities, attributes, relationships, and other
information for the metadata model of the Data Dictionary can be specified in such entities of the
CADM as DataEntity, DataAttribute, DataEntityRelationship, and DataDomain.

4.6.2.3 CADM v1.5 Instantiation
The AV-2 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.
Object
objectIdentifier pointerCode

91136 E038 [Architecture]
91137 E148 [Document]
91138 E679 [OBR]
91605 E678 [OVA]
91606 E678 [OVA]

ObjectVersion

*Identifier *Index name categoryCode
91136 1 Project Charlie-Bravo Architecture 4 [ArchElem]
91137 1 AV-2 Data Dictionary Specification 4 [ArchElem]
91138 1 ArchitectureDocument (AV-2 in Project

Charlie-Bravo Architecture [91136]
5[OBR]

91605 1 Architecture is documented by AV-2 3[OVA]
91606 1 AV-2 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
91138 1 E045 [ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

91605 1 91136 1 91138 1 999 E038-R-E045
91606 1 91137 1 91138 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The AV-2 document is linked to instances of DataDictionary, a subtype of InformationAsset.
The instance tables for a notional example contaning two instances of DataDictionary are shown
below.

4-29

Object
objectIdentifier pointerCode

92136 E123 [DataDictionary]
92137 E123 [DataDictionary]

ObjectVersion

*Identifier *Index name categoryCode
92136 1 AV-2 – Definitions Section 4 [ArchElem]
92137 1 AV-2 – Acronyms and Abbreviations 4 [ArchElem]

ArchitectureElement
*Identifier *Index categoryCode

92136 1 33 = INFORMATION-ASSET
92137 1 33 = INFORMATION-ASSET

InformationAsset

*Identifier *Index typeCode versionIdentifierText
92136 1 18 = DATA DICTIONARY Version 1.0.1
92137 1 18 = DATA DICTIONARY Version 1.0.1

DataDictionary

*Identifier *Index typeCode
92136 1 8 = NOT SPECIFIED
92137 1 8 = NOT SPECIFIED

Each instance of DataDictionary can be related to one or more instances of ObjectByReference
corresponding to the CADM v1.03 entity DataDictionaryElement. The tables below show a
series of instances for the notional example discussed in this section.

Object
objectIdentifier pointerCode

20000001 E679 [OBR]
20000002 E679 [OBR]
20000003 E679 [OBR]
20000007 E679 [OBR]
20000008 E679 [OBR]
20000009 E679 [OBR]
20000010 E679 [OBR]
20000011 E679 [OBR]
20000012 E679 [OBR]
20000013 E679 [OBR]

4-30

ObjectVersion
*Identifier *Index name categoryCode
20000001 1 ACCURACY, GEOSPATIAL 5 [OBR]
20000002 1 ACCURACY, KINEMATIC 5 [OBR]
20000003 1 ACTIVITY MODEL 5 [OBR]
20000007 1 A/C 5 [OBR]
20000008 1 A-A 5 [OBR]
20000009 1 AAAV 5 [OBR]
20000010 1 AAD 5 [OBR]
20000011 1 AADC 5 [OBR]
20000012 1 AAMDC 5 [OBR]
20000013 1 AAP 5 [OBR]

ObjectByReference

*Identifier *Index categoryCode
20000001 1 E124 [DataDictionaryElement]
20000002 1 E124 [DataDictionaryElement]
20000003 1 E124 [DataDictionaryElement]
20000007 1 E124 [DataDictionaryElement]
20000008 1 E124 [DataDictionaryElement]
20000009 1 E124 [DataDictionaryElement]
20000010 1 E124 [DataDictionaryElement]
20000011 1 E124 [DataDictionaryElement]
20000012 1 E124 [DataDictionaryElement]
20000013 1 E124 [DataDictionaryElement]

For each instance of ObjectByReference corresponding to the CADM v1.03 entity
DataDictionaryElement, one can specify its attribution via ObjectByReferenceCharacterization.
The tables below show this for the first two instances in the table above.

ObjectByReferenceCharacterization
*Identifier OBR

 Identifier
OBR
Index

category
Code

value
Text

45671 20000001 1 E124.A01 1 (Approved)
45672 20000001 1 E124.A02 20010401

45673 20000001 1 E124.A03

CID systems must be sufficiently accurate to precisely correlate
characterizations among multiple closely spaced surface
targets. Geospatial accuracy will be met if all participants can
correctly correlate with network tracks. Thus, if participants are
not generating dual designations and not miscorrelating tracks,
then they must be meeting the CID requirement for geospatial
accuracy.

45674 20000001 1 E124.A04 Text
45676 20000001 1 E124.A06 SIAP SETF Analysis System Engineering Team
45677 20000001 1 E124.A07 For use in CID and JTAMD architectures
45678 20000002 1 E124.A01 1 (Approved)
45679 20000002 1 E124.A02 20010401

45680 20000002 1 E124.A03
CID systems are kinematically accurate when the position and
velocity of a track agrees with the position and velocity of the
associated object.

45681 20000002 1 E124.A04 Text
45683 20000002 1 E124.A06 SIAP SETF Analysis System Engineering Team
45684 20000002 1 E124.A07 For use in CID and JTAMD architectures

4-31

The categoryCode values in the table above correspond to the attribution of the CADM
v1.03 entity DataDictionaryElement. They have the following meaning:

E124.A01 = ApprovalStatusCode
E124.A02 = ApprovalStatusCalendarDate
E124.A03 = DefinitionText
E124.A04 = FormatDescriptionText
E124.A06 = SourceName
E124.A07 = UsageDescriptionText

The linkage between the AV-2 document and the instances of DataDictionary is done through
ObjectVersionAssociation. The table below show the instantiation for the example shown in this
section (the instances of Object and ObjectVersion are not shown).

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

256801 1 92136 1 91137 1 999 E123-R-E126
256802 1 92137 1 91137 1 999 E123-R-E126

E123-R-E126 = [DataDictionary] is cited for [DataDictionarySpecification – AV-2]

4.6.2.4 Net-Centric Requirements
The specification of services and family of services can be expressed in CADM v1.5 through

SoaService. Instances of this entity can be linked to each other through ObjectVersionAssociation
with categoryCode set to E684 [SoaServiceAssociation]. This allows the expression of
decomposition of services as well as other relationships such as “supports,” “is alternate for,”
etc.

4.6.3 CADM v1.5 Support for High-Level Operational Concept Graphic (OV-1)

4.6.3.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-1 describes a mission and highlights main

operational nodes (see OV-2 definition), as well as interesting or unique aspects of operations. It
provides a description of the interactions between the subject architecture and its environment,
and between the architecture and external systems. A textual description accompanying the
graphic is crucial. Graphics alone are not sufficient for capturing the necessary architecture data.

4.6.3.2 High-Level Description
Figure 4-16 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-1.

4-32

OV-1
HL Operational

Concept
consists of

associated to Concept
Graphic

Node

Agreement

IT
Requirement

Guidance

Materiel
Type

Architecture Task

Information
Asset

SystemOrganization

Organization
Type

Communication
Medium

Figure 4-16: High-Level Depiction of CADM v1.5 Data Structures for OV-1 Representation

In CADM v1.5, the DoDAF architecture product OV-1 is an instance of Document with
architectureProductCategoryCode = 6 [CONCEPT-GRAPHIC]. Where an OV-1 is made up of
discrete components defined in their own right, the overall OV-1 can be built through
DocumentAssociation (using ObjectVersionAssociation). Each instance of OV-1 or a component
can be directly related in the CADM to such entities as Agreement, all other architecture
products, Architecture, Guidance (including subtypes of InformationTechnologyRequirement for
needlines and information exchange contents), InformationAsset, MaterielType, Organization,
OrganizationType, Node, and System through relationships with the parent entity Document.
Indirect relationships to Mission, Task, CommunicationMedium, and PlatformElement (through
ObjectByReference corresponding to the CADM v1.03 entity SystemElement) can also be
recorded in the CADM. See Figure 4-17, USCENTCOM deep operations in the joint operations
area.

4-33

4.6.3.3 CADM v1.5 Instantiation

O
pn’l Bdry

FSCL

TLAM

JFMCC

JFSOCC

609
AIS

513
ACE

WOC

 JFC
 JIC/JOC

JFACC
(AOC)

DJFLCC
(DOCC)

 D
eep

 Operations

 A
rea

FSCL

Opn’l Bdry

Marine
Forces

Army
Forces

F2C2

CALCM
 Army TACMS

SOF
Coalition

Forces

JICCENT

National Systems

Rivet Joint
AWACS

JSTARS FA-18U-2R (TR-1)

BCL

F-117

Intelligence Systems
Sanctuary or CONUS
Split-Based and
Reachback

USCENTCOM Deep Operations in the Joint Operations Area

UAV

Figure 4-17: USCENTCOM Deep Operations in the Joint Operations Area Example

The OV-1 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

115 E038[Architecture]
116 E148[Document]
117 E679[OBR]
522 E678[OVA]
523 E678[OVA]

4-34

ObjectVersion
*Identifier *Index name categoryCode

115 1 Program Architecture C08 4[ArchElem]
116 1 Notional OV-1 4[ArchElem]
117 1 ArchitectureDocument (OV-1 in Program

Architecture C08)
5[OBR]

522 1 Architecture is documented by OV-1 3[OVA]
523 1 AV-2 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
117 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 115 1 117 1 999 E038-R-E045
523 1 116 1 117 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The tables below show the instance tables for a notional example using CADM v1.5.
Object

objectIdentifier pointerCode
116 E148[Document]
117 E148[Document]
215 E679 [OBR]
216 E679 [OBR]

ObjectVersion
*Identifier *Index name categoryCode

116 1 OV-1 Electronic Commerce Overview and
Summary

4[ArchElem]

117 1 OV-1 CENTCOM Deep Operations in JOA
Overview and Summary

4[ArchElem]

215 1 ConceptGraphic for OV-1 [116] 5[OBR]
216 ConceptGraphic for OV-1 [117]

ObjectByReference

*Identifier *Index categoryCode
215 1 E111[ConceptGraphic]
216 1 E111[ConceptGraphic]

Through the use of ObjectByReferenceCharacterization, it is possible to state the specifics of
each graphic, for example its physical type, i.e., view graph, bit map, etc.

The relation between the OV-1 and the instances of Agreement is done through
ObjectByReference in the usual manner. The instances of OVA in the Object and ObjectVersion
tables are not shown.

4-35

Object
objectIdentifier pointerCode

116 E148 [Document]
305 E031 [Agreement]
501 E679 [OBR]

ObjectVersion
*Identifier *Index name categoryCode

116 1 Notional OV-1 4[ArchElem]
305 1 OV-1 Agreement 4[ArchElem]
501 1 AgreementDocument(Agreement in OV-1) 5[OBR]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

7701 1 116 1 501 1 999 E031-R-E033
7702 1 305 1 501 1 999 E031-R-E034

The relationTypeCode values used have the following meanings:

E148-R-E033 = specifies
E031-R-E033 = is specified using

4.6.3.4 Net-Centric Requirements
The specification of services at the operational level can be expressed in CADM v1.5

through SoaService, which is linkable to Node through instances of ObjectByReference
corresponding to NodeSoaService. The applicable codes in the ObjectVersionAssociation table
are:

E682-R-E685 = [SoaService] supports the functions of [NodeSoaService]

E359-R-E685 = [Node] is supported by [NodeSoaService].

4.6.4 CADM v1.5 Support for Operational Node Connectivity Description (OV-2)

4.6.4.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-2 graphically depicts the operational nodes (or

organizations) with needlines between those nodes that indicate a need to exchange information.
The graphic includes internal operational nodes (internal to the architecture) as well as external
nodes.

4.6.4.2 High-Level Description
Figure 4-18 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-2.

4-36

OV-2

Node Connectivity
Description

consists of

InformationExchangeRequirement

InformationRequirement

ExchangeNeedLineRequirement

ProcessActivityExchangeRequirement

logical needline

Network

associated toNode

producer consumer

Figure 4-18: High-Level Depiction of CADM v1.5 Data Structures for OV-2 Representation (Notation

Independent Style)

In CADM v1.5, the DoDAF architecture product OV-2 as an architecture product is
expressed as an instance of Document. This instance can be connected to the appropriate instance
of Architecture of which it is part. The instance of Document links to the actual data content of
the OV-2 through one or more instances of Network.

The function of these instances of Network is simply to collect the nodes that are part of the
OV-2. The nodes, in turn, can be linked to each other to create node associations. As will be
shown below, these node associations are related to the instances of
InformationExchangeRequirement, the CADM v1.5 entity that serves as the focus for the
specification of the logical needlines.

InformationTechnologyRequirement has four subtypes, namely,
ProcessActivityExchangeRequirement (PAER) (modeled via ObjectByReference),
InformationExchangeRequirement (IER), ExchangeNeedLineRequirement (ENLR), and
InformationRequirement (IR).

In the context of an OV-2, an instance of ObjectByReference corresponding to
ProcessActivityExchangeRequirement allows the specification of the producer and consumer
activities with respect to each instance of IER. Instances of PAER are linked to IER, through the
relationship “PAER is cited in IER.”

4-37

As the description of the OV-2 in DoDAF v1.5 Volume II indicates, needlines can be among
organizations. The CADM v1.5 data structure ENLR can be used to state the organization or
organization type that is the source or destination with respect to each IER. Instances of ENLR
are linked to IER via the relationship “ENLR uses IER.”

The characterization of the information content of a logical needline is done through the
CADM v1.5 data structure IR. Instances of IER can then be linked to the corresponding IR via
the relationship “IR is used for IER.”

The OV-2 product itself (as opposed to its content) is represented in CADM v1.5 as an
instance of Document. The linkage of the OV-2 document to its content (as described above) is
established via the relationship “is used to specify” from Network (which is defined as the
specification for the joining of two or more nodes for a specific purpose).

4.6.4.3 CADM v1.5 Instantiation
Figure 4-5 in DoDAF Volume II depicts the template for OV-2 products in a notation neutral

form. As shown in Figure 4-5, the needlines may flow either in a single direction or both ways
between two given nodes. When the needlines are intended to be bi-directional, one must
instantiate in CADM v1.5 two instances to InformationTechnologyRequirement, as well as the
corresponding subtypes to indicate the roles implied by the directionality. Each node may be the
site for a number of activities according to this template. As mentioned in the preceding
subsection, the representation of the OV-2 data content that CADM v1.5 utilizes is based on
instances of Network, which in turn may contain as many instances of Node as the OV-2 contains,
and as many instances of InformationExchangeRequirement as there are needlines in the OV-2.

1. For the OV-2 as a document:

a) One Document to express the fact that this is a DoDAF product
b) One Architecture, since products are always viewed as components of architectures
c) One instance of OBR corresponding to ArchitectureDocument to link the two
d) Two instances of OVA, one for the Document relationship, the other for the

Architecture relationship to the OBR above.
Object

objectIdentifier pointerCode
115 E038[Architecture]
116 E148[Document]
117 E679[OBR]
522 E678[OVA]
523 E678[OVA]

4-38

ObjectVersion
*Identifier *Index name categoryCode

115 1 Program Architecture C08 4[ArchElem]
116 1 Notional Node Connectivity Description

(Template)
4[ArchElem]

117 1 ArchitectureDocument (OV-2 in Program
Architecture C08)

5[OBR]

522 1 Architecture is documented by OV-2 3[OVA]
523 1 OV-2 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
117 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 115 1 117 1 999 E038-R-E045
523 1 116 1 117 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

2. For the Nodes:

a) One instance of Network, to collect the various node associations
b) Five instances of Node, three that are internal to the OV-2 and two external to it
c) Five instances of OBR (NetworkNode) to link the nodes to the network
d) 10 instances of OVA to relate the network to the nodes (these are always

pairwise, one OVA from Network to OBR (NetworkNode) and one OVA from
Node to OBR(NetworkNode)

e) Four instances of OVA (NodeAssociation) to handle the associations between the
five nodes in the template

Object
objectIdentifier pointerCode

207 E333[Network]
217 E359[Node]
218 E359[Node]
219 E359[Node]
220 E359[Node]
221 E359[Node]
247 E679[OBR]
248 E679[OBR]
249 E679[OBR]
250 E679[OBR]
251 E679[OBR]]
524 E678[OVA]
525 E678[OVA]
526 E678[OVA]

4-39

objectIdentifier pointerCode
527 E678[OVA]
528 E678[OVA]
529 E678[OVA]
530 E678[OVA]
531 E678[OVA]
532 E678[OVA]
533 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

207 1 OV-2 Level 1 Decomposition 4[ArchElem]
217 1 Node A 4[ArchElem]
218 1 Node B 4[ArchElem]
219 1 Node C 4[ArchElem]
220 1 External Destination L 4[ArchElem]
221 1 External Source M 4[ArchElem]
247 1 NetworkNodeA (Node A in OV-2[115]) 5[OBR]
248 1 NetworkNodeB (Node B in OV-2[115]) 5[OBR]
249 1 NetworkNodeC (Node C in OV-2[115]) 5[OBR]
250 1 NetworkNodeL (External Destination L in

OV-2[115])
5[OBR]

251 1 NetworkNodeM (External Source M in
OV-2[115])

5[OBR]

524 1 NetworkNodeA[247] is part of Network 3[OVA]
525 1 NodeA[217] is part of NetworkNodeA 3[OVA]
526 1 NetworkNodeB[248] is part of Network 3[OVA]
527 1 NodeB[218] is part of NetworkNodeB 3[OVA]
528 1 NetworkNodeC[249] is part of Network 3[OVA]
529 1 NodeB[219] is part of NetworkNodeC 3[OVA]
530 1 NetworkNodeL[250] is part of Network 3[OVA]
531 1 ExternalDestinaltionL[220] is part of

NetworkNodeL
3[OVA]

532 1 NetworkNodeM[251] is part of Network 3[OVA]
533 1 ExternalSourceM[221] is part of

NetworkNodeM
3[OVA]

ObjectByReference

*Identifier *Index categoryCode
247 1 E350[NetworkNode]
248 1 E350[NetworkNode]
249 1 E350[NetworkNode]
250 1 E350[NetworkNode]
251 1 E350[NetworkNode]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

524 1 207 1 247 1 999 E333-R-E350
525 1 217 1 247 1 999 E359-R-E350
526 1 207 1 248 1 999 E333-R-E350
527 1 218 1 248 1 999 E359-R-E350

4-40

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

528 1 207 1 249 1 999 E333-R-E350
529 1 219 1 249 1 999 E359-R-E350
530 1 207 1 250 1 999 E333-R-E350
531 1 220 1 250 1 999 E359-R-E350
532 1 207 1 251 1 999 E333-R-E350
533 1 221 1 251 1 999 E359-R-E350

The relationTypeCode values used have the following meanings:

E359-R-E350 = participates in
E333-R-E350 = has as a participant

For the node associations:
Object
objectIdentifier pointerCode

534 E678[OVA]
535 E678[OVA]
536 E678[OVA]
537 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

534 1 Node A to Node B 3[OVA]
535 1 Node A to External Source M 3[OVA]
536 1 Node B to External Destination L 3[OVA]
537 1 Node B to Node C 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

534 1 217 1 218 1 E362 NULL
535 1 217 1 221 1 E362 NULL
536 1 218 1 220 1 E362 NULL
537 1 218 1 219 1 E362 NULL

3. To relate the instance of Network to the instance of Document:
Object
objectIdentifier pointerCode

563 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

563 1 Network to OV-2 Document 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

563 1 207 1 116 1 999 E333-R-E369

The relationTypeCode values used have the following meanings:

4-41

E333-R-E369 = is used to specify
4. For each of the needlines:

a) One instance of InformationRequirement (a subtype of
InformationTechnologyRequirement, which in turn is a subtype of Guidance)

b) One instance of InformationNeedLineRequirement (a subtype of
InformationTechnologyRequirement, which in turn is a subtype of Guidance)

c) One instance of InformationExchangeRequirement (a subtype of
InformationTechnologyRequirement which in turn is a subtype of Guidance)

d) One instance of InformationTechnologyRequirement, which in turn is a subtype of
Guidance to handle the implicit subtype ProcessActivityExchangeRequirement

e) One instance of ObjectbyReference corresponding to
ProcessActivityExchangeRequirement

f) Three instances of ProcessActivity to reflect the notional activities shown in the
template (Activity 1, Activity 2, Activity 3)

g) One OVA to link IR to IER
h) One OVA to link ENLR to IER
i) One OVA to link PAER to IER
j) OVAs to link ProcessActivity to PAER (note that in the template there is no way

to know whether the ProcessActivity produces or consumes the IER)

Example: Needline 2 in OV-2 Template: Node A sending information Type Y to Node B.

For the characterization of the needline, we need IR, ENLR, IER and PAER. The first three
are explicitly modeled in CADM v1.5. PAER is modeled through ObjectByReference. The
instance tables for the InformationRequirement subtype hierarchy are shown below. Similar
instantiation would take place for all the other subtypes.

Object
objectIdentifier pointerCode

307 E246[InformationRequirement]
308 E164[ExchangeNeedLineRequirement]
309 E234[InformationExchangeRequirement]
310 E251[InformationTechnologyRequirement]
564 E679[OBR]
565 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

307 1 IR for Needline 2 4[ArchElem]
308 1 ENLR for Needline 2 4[ArchElem]
309 1 IER for Needline 2 4[ArchElem]
310 1 ITR for Needline 2 4[ArchElem]
564 1 PAER for Needline 2 5[OBR]
565 1 ITR[310] is a PAER[564] 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
564 1 E491[ProcessActivityExchangeRequirement]

4-42

ArchitectureElement
*Identifier *Index categoryCode

307 1 27 = GUIDANCE
308 1 27 = GUIDANCE
309 1 27 = GUIDANCE
310 1 27 = GUIDANCE

Guidance
*Identifier *Index categoryCode

307 1 13 = INFORMATION TECHNOLOGY
308 1 13 = INFORMATION TECHNOLOGY
309 1 13 = INFORMATION TECHNOLOGY
310 1 13 = INFORMATION TECHNOLOGY

InformationTechnologyRequirement
*Identifier *Index categoryCode

307 1 7 = INFORMATION REQUIREMENT
308 1 3 = EXCHANGE NEED LINE REQUIREMENT
309 1 4 = INFORMATION EXCHANGE REQUIREMENT
310 1 8 = PROCESS ACTIVITY EXCHANGE REQUIREMENT

InformationRequirement

*Identifier *Index accuracy
Description

Text

automated
Processing

Code

content
Size
Qty

exchange
Frequency

Text

graphic
Page

HighQty

graphic
Page

LowQty
307 1 1 500000 2/hr 200 10

methodVoiceVideoHigh
ElapsedTimeQuantity

methodVoiceVideo
LowElapsedTimeQuantity

perishability
HighElapsed
TimeQuantity

perishability
LowElapsedTime

Quantity

subscription
TypeText

300 75 600 120

tTransaction
TypeText

volume
Code

300 H

The special case of the implicit subtype ProcessActivityExchangeRequirement requires an
entry in the ObjectVersionAssociation table to express the linkage to its supertype
InformationExchangeRequirement.

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

565 1 310 1 564 1 999 E251-S-E491

The relationTypeCode values used have the following meanings:

E251-S-E491 = is a
In the OV-2 template, there are three activities occurring at Node A and Node B. If, for

example, Activity 1 (at Node A) is the producer ProcessActivity and Activity 2 (at Node) is the
consumer ProcessActivity of the information, one can use the CADM v1.03 entity
ProcessActivityExchangeRequirement (instantiated as ObjectByReference—see previous table

4-43

above), that supports that type of relationship. The instance table below shows how this is done
in CADM v1.5.

Object
objectIdentifier pointerCode

427 E486[ProcessActivity]
428 E486[ProcessActivity]
566 E678 [OVA]
567 E678 [OVA]

ObjectVersion

*Identifier *Index name categoryCode
427 1 Activity 1 4[ArchElem]
428 1 Activity 2 4[ArchElem]
566 1 Activity 1 produces IER 3[OVA]
567 1 Activity 2 consumes IER 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

566 1 427 1 564 1 999 E486-R2-E491
567 1 428 1 564 1 999 E486-R1-E491

The relationTypeCode values used have the following meanings:

E486-R1-E491 = is the consumer for
E486-R2-E491 = is the producer for

In CADM v1.5 the InformationExchangeRequirement can be linked to IR, ENLR, and PAER.
The instance table below shows the case for Needline 2 in the OV-2 template.

Object
objectIdentifier pointerCode

538 E678[OVA]
539 E678[OVA]
540 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
538 1 IR[307] to IER[309] 3[OVA]
539 1 ENLR[308] to IER[309] 3[OVA]
540 1 PAER[564] to IER[309] 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

538 1 307 1 309 1 999 E246-R-E234

539 1 308 1 309 1 999 E164-R-E234

540 1 564 1 309 1 999 E491-R-E234

The relationTypeCode values used have the following meanings:

4-44

E246-R-E234 = is used for
E164-R-E234 = uses
E491-R-E234 = is cited in

The relationship of the nodes involved in the IER is done by linking to it the specific node
association for which the IER is defined.

Object
objectIdentifier pointerCode

569 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

569 1 Node A to Node B for IER[309] 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

569 1 534 1 309 1 999 E362-R-E234

The relationTypeCode values used have the following meanings:

E362-R-E234 = is used to represent

4.6.4.4 Net-Centric Requirements
The specification of service functionality provider, service consumer, and unanticipated user

at the operational level can be expressed in CADM v1.5 through OperationalRole, which is
linkable to an OV-2 node through instances of ObjectByReference corresponding to the CADM
v1.03 entity NodeOperationalRole. This allows the specification of the role identified for each
node. The applicable codes in the ObjectVersionAssociation table are:

E359-R-E389 = [Node] represents [NodeOperationalRole]

E424-R-E389 = [OperationalRole] is represented by [NodeOperationalRole]

4.6.5 CADM v1.5 Support for Operational Information Exchange Matrix (OV-3)

4.6.5.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-3 details information exchanges and identifies

“who exchanges what information, with whom, why the information is necessary, and how the
information exchange must occur.” [CJCSI 6212.01D] There is not a one-to-one mapping of
OV-3 information exchanges to OV-2 needlines; rather, many individual information exchanges
may be associated with one needline.

4.6.5.2 High-Level Description
Figure 4-19 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-3. As shown in the figure, the OV-3 is a presentation format for
the exchanges that highlights the sender and receiver, the content of the exchange, the constraints
imposed on the exchanges, and the rationale for the exchange.

4-45

OV-3

InformationExchangeRequirement

InformationRequirement

ExchangeNeedLineRequirement

ProcessActivityExchangeRequirement

logical needline

who what why how
info A
info B
info C
info D
info E

Figure 4-19: High-Level Depiction of CADM v1.5 Data Structures for OV-3 Representation

In CADM v1.5, the DoDAF architecture product OV-3 as an architecture product can be
linked to the instance of Document representing the OV-3. In turn the instance of Architecture
can be related to it. The actual data content of the OV-3 is built linking it to instances of
InformationExchangeMatrixElement, which themselves can be linked to instances of
InformationElement, ExchangeNeedLineRequirement, InformationExchangeRequirement, and
ProcessActivityExchangeRequirement.

All this information is, in principle, captured already in the characterization of the logical
needlines depicted in the OV-2. In CADM v1.5, the OV-3 is supported through the construct
InformationExchangeMatrixElement from CADM v1.03, instantiated through
ObjectByReference.

4.6.5.3 CADM v1.5 Instantiation
The OV-3 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.
Object

objectIdentifier pointerCode
125 E038[Architecture]
126 E148[Document]
127 E679[OBR]
601 E678[OVA]
602 E678[OVA]

4-46

ObjectVersion
*Identifier *Index name categoryCode

125 1 Project X4567 Architecture 4[ArchElem]
126 1 OV-3 Bravo-3 4[ArchElem]
127 1 ArchitectureDocument (OV-3 in Program

Architecture[126]
5[OBR]

601 1 Architecture is documented by OV-3 3[OVA]
602 1 OV-3 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

601 1 125 1 127 1 999 E038-R-E045
602 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The instance of Document representing the OV-3 can now be linked to each of the required
instances of InformationExchangeMatrixElement (expressed through ObjectByReference).

Object
objectIdentifier pointerCode

701 679 [OBR]
702 679 [OBR]
703 679 [OBR]
704 679 [OBR]
671 678 [OVA]
672 678 [OVA]
673 678 [OVA]
674 678 [OVA]

ObjectVersion

*Identifier *Index name categoryCode
701 1 IER Matrix Element 1 5[OBR]
702 1 IER Matrix Element 2 5[OBR]
703 1 IER Matrix Element 3 5[OBR]
704 1 IER Matrix Element 4 5[OBR]
671 1 OV-3[125] contains IER ME 1 3[OVA]
672 1 OV-3[125] contains IER ME 2 3[OVA]
673 1 OV-3[125] contains IER ME 3 3[OVA]
674 1 OV-3[125] contains IER ME 4 3[OVA]

4-47

ObjectByReference
*Identifier *Index categoryCode

701 1 E226[IER Matrix Element]
702 1 E226[IER Matrix Element]
703 1 E226[IER Matrix Element]
704 1 E226[IER Matrix Element]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

671 1 126 1 701 1 999 E225-R-E226
672 1 126 1 702 1 999 E225-R-E226
673 1 126 1 703 1 999 E225-R-E226
674 1 126 1 704 1 999 E225-R-E226

The relationTypeCode values used have the following meanings:

E225-R-E226 = contains
Finally, each InformationExchangeMatrixElement can be linked to the pertinent instance of

InformationExchangeRequirement. For the purpose of illustration, one can take the instance
already created for the OV-2 example discussed in the previous section. The only addition
required is the new instance of OVA.

Object
objectIdentifier pointerCode

309 E234[InformationExchangeRequirement]
901 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
309 1 IER for Needline 2 4[ArchElem]
901 1 IER[309]] to IER Matrix Element 1 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 701 1 309 1 999 E234-R-E226

The relationTypeCode values used have the following meanings:

E234-R-E226 = [IER] is referenced in [InformationExchangeMatrixElement]

4.6.5.4 Net-Centric Requirements
The specification of discovery metadata at the operational level can be expressed in CADM

v1.5 through DiscoveryMetadata, which can be linked to the instance of Document corresponding
to OV-3. Where discovery metadata needs to be specified individually for each of the instances
of InformationExchangeRequirement, the association can be done through
ObjectVersionAssociation with relationTypeCode = E147-R-E234 ([DiscoveryMetadata] is
specified for [IER].

4-48

4.6.6 CADM v1.5 Support for Organizational Relationships Chart (OV-4)

4.6.6.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-4 illustrates the command structure or

relationships (as opposed to relationships with respect to a business process flow) among human
roles, organizations, or organization types that are the key players in an architecture.

4.6.6.2 High-Level Description
Figure 4-20 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-4 when represented in a notation neutral diagram.

OV-4

Organizational
Relationship Chart

consists of

associated toOrganization

Rolemanagement relationship

command relationship

subordination relationship

Figure 4-20: High-Level Depiction of CADM v1.5 Data Structures for OV-4 Representation (Notation Neutral)

In CADM v1.5, the DoDAF architecture product OV-4 as an architecture product is
expressed as an instance of Document. The OV-4 can be linked to the appropriate instance of
Architecture through the associative entity ArchitectureDocument (instantiated through
ObjectByReference).

The actual data content of the OV-4 is built linking it to instances of
OrganizationalRelationshipChartElement from CADM v1.03, instantiated through
ObjectByReference, which themselves can be linked to instances of ObjectVersionAssociation
corresponding to OrganizationAssociation, OrganizationTypeAssociation, or NodeHierarchy, a
subtype of NodeAssociation.

4.6.6.3 CADM v1.5 Instantiation
The OV-4 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.

4-49

Object
objectIdentifier pointerCode

105 E038[Architecture]
106 E148[Document]
107 E679[OBR]
822 E678[OVA]
823 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

105 1 Program Architecture C09 4[ArchElem]
106 1 Notional Organizational Relationship Chart 4[ArchElem]
107 1 ArchitectureDocument (OV-4 in Program

Architecture C09)
5[OBR]

822 1 Architecture is documented by OV-4 3[OVA]
823 1 OV-4 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
107 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

822 1 105 1 107 1 999 E038-R-E045
823 1 106 1 107 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The instance of Document representing the OV-4 can now be linked to each of the required
instances of OrganizationalRelationshipChartElement (expressed through ObjectByReference).

Object
objectIdentifier pointerCode

401 679 [OBR]
402 679 [OBR]
403 679 [OBR]
404 679 [OBR]
405 679 [OBR]
406 679 [OBR]
171 678 [OVA]
172 678 [OVA]
173 678 [OVA]
174 678 [OVA]
175 678 [OVA]
176 678 [OVA]

4-50

ObjectVersion
*Identifier *Index name categoryCode

401 1 Org-Rel-Chart Element 1 5[OBR]
402 1 Org-Rel-Chart Element 2 5[OBR]
403 1 Org-Rel-Chart Element 3 5[OBR]
404 1 Org-Rel-Chart Element 4 5[OBR]
405 1 Org-Rel-Chart Element 5 5[OBR]
406 1 Org-Rel-Chart Element 6 5[OBR]
171 1 OV-4 [105] comprises ORC Elem 1 3[OVA]
172 1 OV-4 [105] comprises ORC Elem 2 3[OVA]
173 1 OV-4 [105] comprises ORC Elem 3 3[OVA]
174 1 OV-4 [105] comprises ORC Elem 4 3[OVA]
175 1 OV-4 [105] comprises ORC Elem 5 3[OVA]
176 1 OV-4 [105] comprises ORC Elem 6 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
401 1 E435 [Org-Rel-Chart Element]
402 1 E435 [Org-Rel-Chart Element]
403 1 E435 [Org-Rel-Chart Element]
404 1 E435 [Org-Rel-Chart Element]
405 1 E435 [Org-Rel-Chart Element]
406 1 E435 [Org-Rel-Chart Element]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

171 1 106 1 401 1 999 E225-R-E226
172 1 106 1 402 1 999 E225-R-E226
173 1 106 1 403 1 999 E225-R-E226
174 1 106 1 404 1 999 E225-R-E226
175 1 106 1 405 1 999 E225-R-E226
176 1 106 1 406 1 999 E225-R-E226

The relationTypeCode values used have the following meanings:

E225-R-E226 = contains
Finally, each OrganizationalRelationshipChartElement can be linked to the pertinent

instance of ObjectVersionAssociation corresponding to either OrganizationAssociation,
OrganizationTypeAssociation, or NodeHierarchy. To represent the content of the OV-4 template
in Figure 4-11 of DoDAF v1.5 Volume II, it is appropriate to use OrganizationAssociation. The
tables below show their instantiation and linkage to OrganizationalRelationshipChartElement
from above.

4-51

Object
objectIdentifier pointerCode

515 E432[Organization]
516 E432[Organization]
517 E432[Organization]
518 E432[Organization]
519 E432[Organization]
520 E432[Organization]
857 E678[OVA]
858 E678[OVA]
859 E678[OVA]
860 E678[OVA]
861 E678[OVA]
862 E678[OVA]
863 E678[OVA]
864 E678[OVA]
865 E678[OVA]
866 E678[OVA]
867 E678[OVA]
868 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode

515 1 Top-Level Organization A 1 [OI]
516 1 Second-Level Organization B1 1 [OI]
517 1 Second-Level Organization B2 1 [OI]
518 1 Third-Level Organization C1 1 [OI]
519 1 Third-Level Organization C2 1 [OI]
520 1 Working Group D 1 [OI]
857 1 A to B1 link 3[OVA]
858 1 A to B2 link 3[OVA]
859 1 A to D link 3[OVA]
860 1 B1 to C1 link 3[OVA]
861 1 B1 to C2 link 3[OVA]
862 1 D to C1 link 3[OVA]
863 1 ORC Elem 1 to A-B1 Assoc 3[OVA]
864 1 ORC Elem 2 to A-B2 Assoc 3[OVA]
865 1 ORC Elem 3 to A-D Assoc 3[OVA]
866 1 ORC Elem 4 to B1-C1 Assoc 3[OVA]
867 1 ORC Elem 5 to B1-C2 Assoc 3[OVA]
868 1 ORC Elem 6 to D-C1 Assoc 3[OVA]

4-52

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

categoryCode relationType
Code

857 1 515 1 516 1 E436[OrgAssoc] NULL
858 1 515 1 517 1 E436[OrgAssoc] NULL
859 1 515 1 520 1 E436[OrgAssoc] NULL
860 1 516 1 518 1 E436[OrgAssoc] NULL
861 1 516 1 519 1 E436[OrgAssoc] NULL
862 1 520 1 518 1 E436[OrgAssoc] NULL
863 1 857 1 401 1 999 E436-R-E435
864 1 858 1 402 1 999 E436-R-E435
865 1 859 1 403 1 999 E436-R-E435
866 1 860 1 404 1 999 E436-R-E435
867 1 861 1 405 1 999 E436-R-E435
868 1 862 1 406 1 999 E436-R-E435

The relationTypeCode values used have the following meanings:

E436-R-E435 = is used to define

4.6.6.4 Net-Centric Requirements
The specification COIs at the operational level can be expressed in CADM v1.5 through the

use OrganizationType, which can be used to indicate the type of a given instance of Organization.
Where the OV-4 is built using instances of OrganizationType directly, the root of the
organizational chart can be typed as a COI and the associated organization types are understood
as being part of that COI.

4.6.7 CADM v1.5 Support for Operational Activity Model (OV-5)

4.6.7.1 Product Definition
As described in DoDAF v1.5 Volume II, the OV-5 describes the operations that are normally

conducted in the course of achieving a mission or a business capability. It describes capabilities,
operational activities (or tasks), input and output (I/O) flows between activities, and I/O flows
to/from activities that are outside the scope of the architecture. High-level operational activities
should trace to (are decompositions of) a Business Area, an Internal Line of Business, and/or a
Business Sub-Function as published in OMB’s BRM [OMB, 2003].

4.6.7.2 High-Level Description
Figure 4-21 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-5 that is represented as an Integrated Definition for Activity
Modeling (IDEF0) diagram.

4-53

ActivityModel consists of

ProcessActivity

InformationElement

flows from flows into

Role

OV-5

Figure 4-21: High-Level Depiction of CADM v1.5 Data Structures for OV-5 Representation (IDEF0 Style)

In CADM v1.5, the DoDAF architecture product OV-5 as an architecture product is
expressed as an instance of Document. The OV-5 can be linked to the appropriate instance of
Architecture through the associative entity ArchitectureDocument (instantiated through
ObjectByReference). The relationship between InformationAsset and the Document instance
corresponding to OV-5 provides access to its content.

The data content of a DoDAF architecture product OV-5 in IDEF0 notation is expressed in
CADM v1.5 as an instance of ActivityModel (a subtype of InformationAsset) that is composed of
activities, represented as instances of ProcessActivity. For each of the instances of
ProcessActivity, there may be one or more instances of InformationElement (i.e., the flows
between activities mentioned above). In the context of IDEF0, these flows may have specific
“roles” (input, output, control or mechanism). Every InformationElement flows from some
activity (either internal to the OV-5 or external to it) and flows into another activity (including
the activity whence it originated for cases where there is a feedback loop).

4.6.7.3 CADM v1.5 Instantiation
The OV-5 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.
Object

objectIdentifier pointerCode
305 E038[Architecture]
306 E148[Document]
307 E679[OBR]
611 E678[OVA]
612 E678[OVA]

4-54

ObjectVersion
*Identifier *Index name categoryCode

305 1 Program Architecture C01 4[ArchElem]
306 1 Notional Activity Model 4[ArchElem]
307 1 ArchitectureDocument (OV-5 in Program

Architecture[306]
5[OBR]

611 1 Architecture is documented by OV-5 3[OVA]
612 1 OV-5 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
307 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

611 1 305 1 307 1 999 E038-R-E045
612 1 306 1 307 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

Figure 4-14 in DoDAF Volume II depicts the template for OV-5 products using IDEF0
notation. As shown in that Figure, there may be any number of activities in an OV-5 built using
this template. Each activity has a name, notionally depicted as A1, A2, etc., and there are flows
starting at some activity and ending at another. As mentioned in the subsections above, the
representation of this data content in CADM v1.5 utilizes an instance of ActivityModel, as many
instances of ProcessAcitivity as there are activities, and as many instances of InformationElement
as there are flows in the OV-5 (e.g., Flow 1, Flow 2, etc.)

The instance tables below show how CADM v1.5 captures the notional activity A2 from
Figure 4-14 in DoDAF Volume II, and its associated flows (Flow 2 and Flow 3). As discussed in
previous examples, the first step is to create all the instances of Object and ObjectVersion
required. For this example, one needs (a) an instance corresponding ActivityModel, a subtype of
InformationAsset (b) three instances for the activities A1, A2 and A3, (c) two instances for the
flows as instances of InformationElement, (d) four instances for the
ActivityModelInformationElementRole [AMIER] (the connector between the OV-5, the activities,
the flows, and their respective roles) of ObjectByReference, (e) three instances of
ObjectByReference corresponding to the CADM v1.03 ActivityModelProcessActivity [AMPA] to
relate the instances of ProcessActivity A1, A2, and A3 to the ActivityModel (f) fourteen instances
of ObjectVersionAssociation. Six of those are needed to relate the activities A1, A2, and A3 to
the OV-5, wherein they are defined. The other eight are needed to express the linkage between
each of the flows to their activities, and the roles each of the flows play in the context of the OV-
5, wherein they reside.

4-55

Object
objectIdentifier pointerCode

116 E009[ActivityModel]
217 E486[ProcessActvity]
218 E486[ProcessActvity]
219 E486[ProcessActvity]
320 E221[InformationElement]
321 E221[InformationElement]
425 E010[ActivityModelInformationElementRole]
426 E010[ActivityModelInformationElementRole]
427 E010[ActivityModelInformationElementRole]
428 E010[ActivityModelInformationElementRole]
522 E678[OVA]
523 E678[OVA]
524 E678[OVA]
525 E678[OVA]
526 E678[OVA]
527 E678[OVA]
528 E678[OVA]
529 E678[OVA]
530 E678[OVA]
531 E678[OVA]
532 E678[OVA]
533 E678[OVA]
822 E022[ActivityModelProcessActivity]
823 E022[ActivityModelProcessActivity]
824 E022[ActivityModelProcessActivity]

4-56

ObjectVersion
*Identifier *Index name categoryCode

116 1 Level 1 Decomposition (Template) 4[ArchElem]
217 1 IDEF0 Activity A1 4[ArchElem]
218 1 IDEF0 Activity A2 4[ArchElem]
219 1 IDEF0 Activity A3 4[ArchElem]
320 1 IDEF0 Flow 2 4[ArchElem]
321 1 IDEF0 Flow 3 4[ArchElem]
425 1 AMIER01 for Flow 2 4[ArchElem]
426 1 AMIER02 for Flow 2 4[ArchElem]
427 1 AMIER03 for Flow 3 4[ArchElem]
428 1 AMIER04 for Flow 3 4[ArchElem]
522 1 A1 connected through AMPA01 3[OVA]
523 1 OV-5 connected through AMPA01 3[OVA]
524 1 A2 connected through AMPA02 3[OVA]
525 1 OV-5 connected through AMPA02 3[OVA]
526 1 A3 connected through AMPA03 3[OVA]
527 1 OV-5 connected through AMPA03 3[OVA]
528 1 AMPA[522] is part of AMIER01 3[OVA]
529 1 Flow 1 in AMIER01 starts at A1 3[OVA]
530 1 AMPA[523] is part of AMIER02 3[OVA]
531 1 Flow 1 in AMIER02 ends at A2 3[OVA]
532 1 AMPA[523] is part of AMIER03 3[OVA]
533 1 Flow 2 in AMIER03 starts at A2 3[OVA]
534 1 AMPA[524] is part of AMIER04 3[OVA]
535 1 Flow 2 in AMIER04 ends at A3 3[OVA]
822 1 AMPA01 (A1 in OV-5[116]) 5[OBR]
823 1 AMPA02 (A2 in OV-5[116]) 5[OBR]
824 1 AMPA03 (A3 in OV-5[116]) 5[OBR]

Next, the actual linkages are built in the ObjectVersionAssociation table as shown below.
ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 116 1 822 1 999 E009-R-E022
523 1 217 1 822 1 999 E486-R-E022
524 1 116 1 823 1 999 E009-R-E022
525 1 218 1 823 1 999 E486-R-E022
526 1 116 1 824 1 999 E009-R-E022
527 1 219 1 824 1 999 E486-R-E022
528 1 822 1 425 1 999 E022-R-E010
529 1 320 1 425 1 999 E221-R-E010
530 1 823 1 426 1 999 E022-R-E010
531 1 320 1 426 1 999 E221-R-E010
532 1 823 1 427 1 999 E022-R-E010
533 1 321 1 427 1 999 E221-R-E010
534 1 824 1 428 1 999 E022-R-E010
535 1 321 1 428 1 999 E221-R-E010

The relationTypeCode values used have the following meanings:

E009-R-E022 = includes
E486-R-E022 = is included

4-57

E022-R-E010 = defines
E221-R-E010 = is associated with

Lastly, in order to express the ‘role’ that each of the flows has with respect to the activity
where it starts and ends, one needs to instantiate the respective
ActivityModelInformationElementRole [AMIER]. For simplicity, only the attribute corresponding
to the typeCode is shown. The tables below show the entries in ArchitectureElement and
ActivityModelInformationElementRole, but the corresponding entries in Object and ObjectVersion
are left out.

ArchitectureElement
*Identifier *Index categoryCode

425 1 E010 [AMIER]
426 1 E010 [AMIER]
427 1 E010 [AMIER]
428 1 E010 [AMIER]

ActivityModelInformationElementRole

*Identifier *Index AMIER
categoryCode

425 1 2[output]
426 1 1[input]
427 1 2[output]
428 1 1[input]

Retrieving the information for this segment of the OV-5, shown in Figure 4-14 of DoDAF
Volume II could be accomplished by, for example, querying the database to find out all the
instances of InformationElement. Once this is accomplished, the ObjectVersionAssociation table
can be traversed to retrieve the related instances of ActivityModelInformationElementRole.
Through this, one can retrieve the associated activities, since each instance of
ActivityModelInformationElementRole points to the instance of ObjectByReference that
corresponds to the ActivityModelProcessActivity [AMPA]. In the ObjectVersionAssociation table,
the AMPA entries point to the corresponding instances of ActivityModel and ProcessActivity.
Filtering for just the ProcessActivity permits to extract the name of the activities and, from the
ActivityModelInformationElementRole, one already has the ‘role’ for the flow.

The table below shows the final result where for each one of the flows there are two ‘roles’
showing whether it is an “output” (Role = 2) or an “input” (Role = 1). As can be seen, the
resulting query matches the content of the OV-5 shown in Figure 4-14 in DoDAF Volume II for
the two flows, Flow 2 and Flow 3.

Flow 2 is depicted as being an output of activity A1 and an input for activity A2. Similarly,
Flow 3 is shown as being an output of activity A2 and an input for activity A3.

Table 4-1 Example of a CADM v1.5 Query Showing Activities, Flows, and Their Roles for a Notional OV-5
Using IDEF0

Flow ID Flow Index Flow Name Role Activity ID Activity Index Activity Name
320 1 IDEF0 Flow 2 2 217 1 IDEF0 Activity A1
320 1 IDEF0 Flow 2 1 218 1 IDEF0 Activity A2
321 1 IDEF0 Flow 3 2 218 1 IDEF0 Activity A2
321 1 IDEF0 Flow 3 1 219 1 IDEF0 Activity A3

4-58

The OV-5 template given in Figure 4-15 in DoDAF v1.5 Volume II also mentions the
possibility of annotating the product with information concerning the operational nodes that
conduct them, the materiel that supports them, the cost of conducting the activity, and so forth.
(The types of additional architecture data are notional.)

The cost of activities is supported in CADM v1.5 via the attribution of
ActivityModelProcessActivity [AMPA] (instantiated as ObjectByReference). For each AMPA,
one can provide its corresponding ObjectByReferenceCharacterization. The categoryCode =
E022.A05 corresponds to the CADM v1.03 attribute estimatedCostAmount and it is the means to
provide cost information related to the activities in OV-5.

To link OV-5 activities to the nodes that conduct them in CADM v1.5, one can create the
appropriate instances of ObjectByReference corresponding to the associative entity
NodeProcessActivity of CADM v1.03. In the characterization of each instance, one can set the
categoryCode = E394.A01 (roleCode), and then choose the value 2 = SUPPORTS CONDUCT OF to
state how the node and the OV-5 activity are related.

Linkage of OV-5 activities to materiel (i.e., classes of it) is normally represented in IDEF0 as a
mechanism related to the respective OV-5 activity. This means that if there is a type of materiel
that supports the performance of an OV-5 activity, one can create in CADM v1.5 the
corresponding ActivityModelInformationElementRole for that flow, set the categoryCode = 4
(MECHANISM) and the subcategoryCode = 42 (REFERENCE) and then relate the MaterielType to it
in the ObjectVersionAssociation table with the relationTypeCode = E292-R-E019 (may be a).

4.6.7.4 Net-Centric Requirements
The specification of SOA services at the operational level can be expressed in CADM v1.5

through OperationalRole, which is linkable to an OV-5 activity as a mechanism through the
ActivityModelInformationElementRole for the flows identified for each activity. To do that, one
needs to set in the respective instance of ActivityModelInformationElementRole the value for the
categoryCode = 4 (MECHANISM) and the subcategoryCode = 42 (REFERENCE) and link it to the
OperationalRole in the ObjectVersionAssociation table with the relationTypeCode = E424-R-E019
(is cited as).

4.6.8 CADM v1.5 Support for Operational Rules Model (OV-6a), Operational State
Transition Description (OV-6b), and the Operational Event-Trace Description
(OV-6c)

4.6.8.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-6a/b/c provides the timing and sequencing of

events that capture operational behavior of a business process or mission thread, for example.
Thus, this behavior is related to the activities of OV-5. Behavior modeling and documentation is
essential to a successful architecture description, because it is how the architecture behaves that
is crucial in many situations. Knowledge of the operational nodes, activities, and information
exchanges is crucial; but knowing when, for example, a response should be expected after
sending message X to node Y can also be crucial to achieving successful operations.

4.6.8.2 CADM v1.5 Support for Operational Rules Model (OV-6a)
4.6.8.2.1 Product Definition

4-59

As stated in DoDAF v1.5 Volume II, the OV-6a specifies that operational or business rules
are constraints on an enterprise, a mission, operation, business, or an architecture. While other
OV products (e.g., OV-1, OV-2, and OV-5) describe the structure of a business—what the
business can do—for the most part, they do not describe what the business must do, or what it
cannot do.

4.6.8.2.2 High-Level Description
Figure 4-22 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-6a.

OV-6a

Rule Model consists of

associated toOperationalRule

RuleModelOperationalRule

sequence

Figure 4-22: High-Level Depiction of CADM v1.5 Data Structures for OV-6a Representation

In CADM v1.5, the DoDAF architecture product OV-6a as an architecture product is
expressed as an instance of Document. The OV-6a can be linked to the appropriate instance of
Architecture through the associative entity ArchitectureDocument (instantiated through
ObjectByReference). The actual data content of the OV-6a is built linking it to instances of the
associative entity RuleModelOperationalRule from CADM v1.03 (instantiated through
ObjectByReference), which collects the instances of OperationalRule (a subtype of Guidance) that
make up the rule model itself.

4.6.8.2.3 CADM v1.5 Instantiation
Figure 4-18 in DoDAF v1.5 Volume II shows an example of what a rule model may contain,

with the rules written in natural language.
The instantiation of OV-6a as Document and its relation to an appropriate instance of

Architecture is shown below.

4-60

Object
objectIdentifier pointerCode

275 E038[Architecture]
276 E148[Document]
277 E679[OBR]
111 E678[OVA]
112 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

275 1 Program Architecture C02 4[ArchElem]
276 1 Notional Rule Model 4[ArchElem]
277 1 ArchitectureDocument (OV-6a in

Program Architecture C02)
5[OBR]

111 1 Architecture is documented by OV-6a 3[OVA]
112 1 OV-6a documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
277 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

111 1 275 1 277 1 999 E038-R-E045
112 1 276 1 277 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The instance of Document representing the OV-6a can be linked to each of the required
instances of RuleModelOperationalRule (expressed through ObjectByReference), which will
collect the instances of OperationalRule that make the content of the rule model. Note that
RuleModelOperationalRule relates an instance of Document corresponding to an OV-6a to
multiple instances of OperationalRule.

4-61

Object
objectIdentifier pointerCode

371 E679[OBR]
372 E679[OBR]
373 E679[OBR]
374 E679[OBR]
381 E426[Op Rule]
382 E426[Op Rule]
383 E426[Op Rule]
384 E426[Op Rule]
291 E678 [OVA]
292 E678 [OVA]
293 E678 [OVA]
294 E678 [OVA]
295 E678 [OVA]
296 E678 [OVA]
297 E678 [OVA]
298 E678 [OVA]

ObjectVersion

*Identifier *Index name categoryCode
371 1 RuleModelOperationalRule D1-1 5[OBR]
372 1 RuleModelOperationalRule D1-2 5[OBR]
373 1 RuleModelOperationalRule D1-3 5[OBR]
374 1 RuleModelOperationalRule D1-4 5[OBR]
381 1 Op Rule 1 4 [ArchElem]
382 1 Op Rule 2 4 [ArchElem]
384 1 Op Rule 3 4 [ArchElem]
385 1 Op Rule 4 4 [ArchElem]
291 1 OV-7 cites Op Rule 1 3 [OVA]
292 1 Op Rule 1 is cited for OV-7 3 [OVA]
293 1 OV-7 cites Op Rule 2 3 [OVA]
294 1 Op Rule 2 is cited for OV-7 3 [OVA]
295 1 OV-7 cites Op Rule 3 3 [OVA]
296 1 Op Rule 3 is cited for OV-7 3 [OVA]
297 1 OV-7 cites Op Rule 4 3 [OVA]
298 1 Op Rule 4 is cited for OV-7 3 [OVA]

ObjectByReference

*Identifier *Index categoryCode
371 1 E521[RuleModelOperationalRule]
372 1 E521[RuleModelOperationalRule]
373 1 E521[RuleModelOperationalRule]
374 1 E521[RuleModelOperationalRule]

4-62

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

291 1 276 1 371 1 999 E520-R-E521
292 1 381 1 371 1 999 E426-R-E521
293 1 276 1 372 1 999 E520-R-E521
294 1 382 1 372 1 999 E426-R-E521
295 1 276 1 373 1 999 E520-R-E521
296 1 384 1 373 1 999 E426-R-E521
297 1 276 1 374 1 999 E520-R-E521
298 1 385 1 374 1 999 E426-R-E521

The relationTypeCode values used have the following meanings:

E520-R-E521 = cites
E426-R-E521 = is cited for

The actual rule is stored in the appropriate attributes of each of the instances of Guidance and
OperationalRule. The textual description of the operational rule is recorded in the text of
Guidance. A further characterization of the rule can be stated through the attribution of
OperationalRule. The instance tables below show how this is done for the notional example
(shown in Figure 4-18 in DoDAF v1.5 Volume II) discussed in this section.

ArchitectureElement
*Identifier *Index categoryCode

307 1 27 = GUIDANCE
308 1 27 = GUIDANCE
309 1 27 = GUIDANCE
310 1 27 = GUIDANCE

Guidance
*Identifier *Index categoryCode subject

Text
text

307 1 13 = OPERATIONAL RULE Rule 1 for Rule Model A IF activity is Battle Damage Assessment
THEN it consists of Conduct Battle Damage
Assessment, Conduct Munitions Effects
Assessment, and Recommend Restrike

308 1 13 = OPERATIONAL RULE Rule 2 for Rule Model A IF Battle Damage Assessment Report
completed THEN Recommend Restrike can
be completed

309 1 13 = OPERATIONAL RULE Rule 3 for Rule Model A IF Munitions Effects Assessment Report
completed THEN Recommend Restrike can
be completed

310 1 13 = OPERATIONAL RULE Rule 4 for Rule Model A IF Recommend Restrike occurs THEN facts
of Recommend Restrike must be based on
facts from (Battle Damage Assessment
Report AND Munitions Effects Assessment
Report)

4-63

OperationalRule

*Identifier *Index categoryCode formalLanguage
Name

307 5 4 = CRITERION First Order Predicate Logic
308 6 4 = CRITERION First Order Predicate Logic
309 6 4 = CRITERION First Order Predicate Logic
310 9 4 = CRITERION First Order Predicate Logic

4.6.8.2.4 Net-Centric Requirements
Since the purpose of the OV-6a is to specify operational or business rules that are constraints

on an enterprise, mission, operation, business, or architecture, it would subsequently include any
required operational or business rules that support NCO. Accordingly, the CADM support for the
OV-6a is well suited to support the NCE.

4.6.8.3 CADM v1.5 Support for Operational State Transition Description (OV-6b)
4.6.8.3.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-6b is a graphical method of describing how an

operational node or activity responds to various events by changing its state. The diagram
represents the sets of events to which the architecture will respond (by taking an action to move
to a new state) as a function of its current state. Each transition specifies an event and an action.

4.6.8.3.2 High-Level Description
Figure 4-23 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-6b.

OV-6b

State Transition Diagram consists of

StateTransition

ProcessStateVertex

source target

Role

Event triggers Actionproduces

Figure 4-23: High-Level Depiction of CADM v1.5 Data Structures for OV-6b Representation

In CADM v1.5, the DoDAF architecture product OV-6b as an architecture product is
expressed as an instance of Document with the architectureProductCategoryCode = 28 [STATE

4-64

TRANSITION DESCRIPTION] and the architectureProductSubcategoryCode = 281
[OPERATIONAL STATE TRANSITION DESCRIPTION]. The OV-6b can be linked to the
appropriate instance of Architecture through the associative entity ArchitectureDocument
(instantiated through ObjectByReference).

The actual data content of the OV-6b is built linking it to TransitionProcess, which collects
the instances of ProcessStateVertex (the supertype of ProcessState, and ProcessPseudoState in
CADM v1.03. ProcessState in CADM v1.03 further subtypes into NestingProcessState and
CompositeProcessState). Instances of Action can be related to a given ProcessStateVertex
(subtyped as ProcessState) through ProcessStateAction to indicate the entry into and exit out of
the state transition. Instances of Event (specialized as ProcessEvent) can be used to express the
triggers for the state transitions. The associative entity from CADM v1.03
TransitionProcessResultingAction (instantiated as ObjectByReference) links each transition to the
outcome actions. The linkage of the resulting actions to OV-5 ProcessActivity instances is also
supported through the CADM v1.03 associative entity ProcessActivityAction.

4.6.8.3.3 CADM v1.5 Instantiation
Figure 4-24 shows an example of an operational state transition diagram for air traffic

operations.

ENTERING CONTROLLED
SPACE

CONTROLLED:
NO ACTION

MANEUVERING

IN CONFLICT

LEAVING CONTROLLED
SPACE

HANDOFF TO
LOCAL ATC
COMPLETED

REVISE
CLEARANCE ON

PILOT'S REQUEST

DETECT
DEVIATION

MANEUVERING
COMPLETE

DETECT
CONFLICT

REVISE
CLEARANCE

RESOLVE
CONFLICT
(NO MANEUVER)

COORDINATE INTER-SECTOR TRANSFER

COORDINATE TRANSFER OUT

COORDINATE INTER-SECTOR TRANSFER

COORDINATE
TRANSFER OUT

Figure 4-24: Operational OV-6b Air Traffic Operations Example

The instantiation of OV-6b for this example as Document and its relation to an appropriate
instance of Architecture is shown below.

4-65

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E679[OBR]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 OV-6b- Air Traffic Operations 4[ArchElem]
127 1 ArchitectureDocument (OV-6b in Project

X Architecture)
5[OBR]

522 1 Architecture is documented by OV-6b 3[OVA]
523 1 OV-6b documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

For an OV-6b, the following convention is used: Instances of ProcessStateVertex are created
for oval elements of the OV-6b diagram and the initial and final states (which are treated as
pseudo states). This results in the following mapping for the example shown in Figure 4-24:

Initial state (as a ProcessPseudoState, a subtype of ProcessStateVertex)
Entering Controlled Space (as a ProcessState, a subtype of ProcessStateVertex)
Controlled: No Action (as a ProcessState, a subtype of ProcessStateVertex)
In Conflict (as a ProcessState, a subtype of ProcessStateVertex)
Maneuvering (as a ProcessState, a subtype of ProcessStateVertex)
Leaving Controlled-Space (as a ProcessState, a subtype of ProcessStateVertex)
End state (as a ProcessPseudoState, a subtype of ProcessStateVertex)

The instantiation of these states is shown below:

4-66

Object
objectIdentifier pointerCode

307 E502[ProcessStateVertex]
308 E502[ProcessStateVertex]
309 E502[ProcessStateVertex]
310 E502[ProcessStateVertex]
311 E502[ProcessStateVertex]
312 E502[ProcessStateVertex]
313 E502[ProcessStateVertex]

ObjectVersion
*Identifier *Index name categoryCode

307 1 Initial state 4[ArchElem]
308 1 Entering Controlled Space 4[ArchElem]
309 1 Controlled: No Action 4[ArchElem]
310 1 In Conflict 4[ArchElem]
311 1 Maneuvering 4[ArchElem]
312 1 Leaving Controlled-Space 4[ArchElem]
313 1 End state 4[ArchElem]

The actions associated with the pseudo states are those that represent the entry and exit for
the state transition diagram. The tables below show their instantiation and how they are linked to
the pseudo states.

Object

objectIdentifier pointerCode
611 E001[Action]
612 E001[Action]
614 E679[OBR]
615 E679[OBR]
616 E678[OVA]
617 E678[OVA]
618 E678[OVA]
619 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

611 1 Action A001 4[ArchElem]
612 1 Action A002 4[ArchElem]
614 1 ProcessStateAction PSA001 5[OBR]
615 1 ProcessStateAction PSA002 5[OBR]
616 1 Action A001 to Initial state 3[OVA]
617 1 Initial state to Action A001 3[OVA]
618 1 Action A002 to End state 3[OVA]
619 1 End state to Action A002 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
614 1 E501[ProcessStateAction]
615 1 E501[ProcessStateAction]

4-67

ObjectByReferenceCharacterization

*Identifier OBR
Identifier

OBR
Index

categoryCode valueText

101 614 1 E501.A01 1
102 614 1 E501.A02 1 (entry)
103 615 1 E501.A01 1
104 615 1 E501.A02 2 (exit)

The catergoryCode values used have the following meanings:

E501.A01 = SequenceIdentifierText
E501.A02 = RoleCode
ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

616 1 611 1 614 1 999 E001-R-E501
617 1 307 1 614 1 999 E500-R-E501
618 1 612 1 615 1 999 E001-R-E501
619 1 313 1 615 1 999 E500-R-E501

The relationTypeCode values used have the following meanings:

E001-R-E501 = represents
E500-R-E501 = represents

As indicated above, the content of the OV-6b is expressed through the instantiation of
TranstionProcess. For each instance of TranstionProcess, one can indicate its source and target
states (represented in CADM as instances of ProcessStateVertex), the event that triggers the
transition, as well as the operational rule that may act as the guard condition for the transition. In
CADM v1.5, these links are all represented through entries in the ObjectVersionAssociation
table. The attribute labelName in TranstionProcess is used to capture the text that is attached to
each of the arrows in the state transition diagram. The instance tables below describe how this is
done for the example shown in Figure 4-24.

Object
objectIdentifier pointerCode

701 E663[TransitionProcess]
702 E663[TransitionProcess]
703 E663[TransitionProcess]
704 E663[TransitionProcess]
705 E663[TransitionProcess]
706 E663[TransitionProcess]
707 E663[TransitionProcess]
708 E663[TransitionProcess]
709 E663[TransitionProcess]
710 E663[TransitionProcess]
711 E663[TransitionProcess]
712 E663[TransitionProcess]
713 E663[TransitionProcess]

4-68

ObjectVersion
*Identifier *Index name categoryCode

701 1 TRN001 4[ArchElem]
702 1 TRN002 4[ArchElem]
703 1 TRN003 4[ArchElem]
704 1 TRN004 4[ArchElem]
705 1 TRN005 4[ArchElem]
706 1 TRN006 4[ArchElem]
707 1 TRN007 4[ArchElem]
708 1 TRN008 4[ArchElem]
709 1 TRN009 4[ArchElem]
710 1 TRN010 4[ArchElem]
711 1 TRN011 4[ArchElem]
712 1 TRN012 4[ArchElem]
713 1 TRN013 4[ArchElem]

ArchitectureElement
*Identifier *Index categoryCode

701 1 72 = TRANSITION-PROCESS
702 1 72 = TRANSITION-PROCESS
703 1 72 = TRANSITION-PROCESS
704 1 72 = TRANSITION-PROCESS
705 1 72 = TRANSITION-PROCESS
706 1 72 = TRANSITION-PROCESS
707 1 72 = TRANSITION-PROCESS
708 1 72 = TRANSITION-PROCESS
709 1 72 = TRANSITION-PROCESS
710 1 72 = TRANSITION-PROCESS
711 1 72 = TRANSITION-PROCESS
712 1 72 = TRANSITION-PROCESS
713 1 72 = TRANSITION-PROCESS

TransitionProcess
*Identifier *Index labelName

701 1 —
702 1 Handoff to local ATC completed
703 1 Coordinate Inter-sector transfer
704 1 Coordinate transfer out
705 1 Resolve conflict (no maneuver)
706 1 Detect conflict
707 1 Detect deviation
708 1 Revise clearance on pilot’s request
709 1 Maneuvering complete
710 1 Revise clearance
711 1 Coordinate transfer out
712 1 Coordinate inter-sector transfer
713 1 —

4-69

The intances of ObjectVersionAssociation required to specify the source and target state for
each transition are shown below.

Object
objectIdentifier pointerCode

901 E678[OVA]
902 E678[OVA]
903 E678[OVA]
904 E678[OVA]
905 E678[OVA]
906 E678[OVA]
907 E678[OVA]
908 E678[OVA]
909 E678[OVA]
910 E678[OVA]
911 E678[OVA]
912 E678[OVA]
913 E678[OVA]
914 E678[OVA]
915 E678[OVA]
916 E678[OVA]
917 E678[OVA]
918 E678[OVA]
919 E678[OVA]
920 E678[OVA]
921 E678[OVA]
922 E678[OVA]
923 E678[OVA]
924 E678[OVA]
925 E678[OVA]
926 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

901 1 PSV[307] -- PSV[308] {source} E678[OVA]
902 1 PSV[307] -- PSV[308] {target} E678[OVA]
903 1 PSV[308] -- PSV[309] {source} E678[OVA]
904 1 PSV[308] -- PSV[309] {target} E678[OVA]
905 1 PSV[309] -- PSV[310] {source} E678[OVA]
906 1 PSV[309] -- PSV[310] {target} E678[OVA]
907 1 PSV[309] -- PSV[310] {source} E678[OVA]
908 1 PSV[309] -- PSV[310] {target} E678[OVA]
909 1 PSV[311] -- PSV[309] {source} E678[OVA]
910 1 PSV[311] -- PSV[309] {target} E678[OVA]
911 1 PSV[309] -- PSV[311] {source} E678[OVA]
912 1 PSV[309] -- PSV[311] {target} E678[OVA]
913 1 PSV[309] -- PSV[312] {source} E678[OVA]
914 1 PSV[309] -- PSV[312] {target} E678[OVA]
915 1 PSV[309] -- PSV[312] {source} E678[OVA]
916 1 PSV[309] -- PSV[312] {target} E678[OVA]
917 1 PSV[312] -- PSV[309] {source} E678[OVA]
918 1 PSV[312] -- PSV[309] {target} E678[OVA]
919 1 PSV[311] -- PSV[312] {source} E678[OVA]

4-70

*Identifier *Index name categoryCode
920 1 PSV[311] -- PSV[312] {target} E678[OVA]
921 1 PSV[312] -- PSV[310] {source} E678[OVA]
922 1 PSV[312] -- PSV[310] {target} E678[OVA]
923 1 PSV[312] -- PSV[310] {source} E678[OVA]
924 1 PSV[312] -- PSV[310] {target} E678[OVA]
925 1 PSV[310] -- PSV[313] {source} E678[OVA]
926 1 PSV[310] -- PSV[313] {target} E678[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 307 1 701 1 999 E502-R2-E663
902 1 308 1 701 1 999 E502-R1-E663
903 1 308 1 702 1 999 E502-R2-E663
904 1 309 1 702 1 999 E502-R1-E663
905 1 309 1 703 1 999 E502-R2-E663
906 1 310 1 703 1 999 E502-R1-E663
907 1 309 1 704 1 999 E502-R2-E663
908 1 310 1 704 1 999 E502-R1-E663
909 1 311 1 705 1 999 E502-R2-E663
910 1 309 1 705 1 999 E502-R1-E663
911 1 309 1 706 1 999 E502-R2-E663
912 1 311 1 706 1 999 E502-R1-E663
913 1 309 1 707 1 999 E502-R2-E663
914 1 312 1 707 1 999 E502-R1-E663
915 1 309 1 708 1 999 E502-R2-E663
916 1 312 1 708 1 999 E502-R1-E663
917 1 312 1 709 1 999 E502-R2-E663
918 1 309 1 709 1 999 E502-R1-E663
919 1 311 1 710 1 999 E502-R2-E663
920 1 312 1 710 1 999 E502-R1-E663
921 1 312 1 711 1 999 E502-R2-E663
922 1 310 1 711 1 999 E502-R1-E663
923 1 312 1 712 1 999 E502-R2-E663
924 1 310 1 712 1 999 E502-R1-E663
925 1 310 1 713 1 999 E502-R2-E663
926 1 313 1 713 1 999 E502-R1-E663

The relationTypeCode values used have the following meanings:

E502-R2-E663 = is source for
E502-R1-E663 = is target for

The same approach would be used to link the corresponding trigger events to each of the
instances of TransitionProcess.

The link between the OV-6b Document and each of the instances of TransitionProcess is
done in a similar fashion through ObjectVersionAssociation with the owning Document instance
linked to each of the component instances of TransitionProcess.

4-71

4.6.8.3.4 Net-Centric Requirements
Since the purpose of the OV-6b is to specify a graphical method of describing how an

operational node or activity responds to various events by changing its state, it would
subsequently include any required operational or business rules that support NCO. Accordingly,
the CADM support for the OV-6b is well suited to support the NCE.

4.6.8.4 CADM v1.5 Support for Operational Event-Trace Description (OV-6c)
4.6.8.4.1 Product Definition
As stated in DoDAF v1.5 Volume II, the OV-6c provides a time-ordered examination of the

information exchanges between participating operational nodes as a result of a particular
scenario. Each event-trace diagram should have an accompanying description that defines the
particular scenario or situation.

4.6.8.4.2 High-Level Description
Figure 4-25 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-6c.

OV-6c

consists of

Event

originates at terminates at

Role

Node

Event Trace Description

EventNodeCrossLink

OperationalScenario

Figure 4-25: High-Level Depiction of CADM v1.5 Data Structures for OV-6c Representation

The DoDAF architecture product OV-6c is expressed in CADM v1.5 as an instance of
Document. The OV-6c can be linked to the appropriate instance of Architecture through the
associative entity ArchitectureDocument (instantiated through ObjectByReference).

The actual data content of the OV-6c is built linking it to instances of EventNodeCrossLink,
which collects the instances of Node with roles “originating” and “terminating” with regard to
the event trace. For every pair of nodes, one can also specify the instances of Event that are
involved in the temporal sequence. The OV-6c link to OperationalScenario provides the context
within which the event trace description takes place.

4-72

In addition to the links mentioned above, the EventNodeCrossLink can also be related to
instances of OperationalRule and DirectedConstraint, both subtypes of Guidance.

4.6.8.4.3 CADM v1.5 Instantiation
Figure 4-22 in DoDAF v1.5 Volume II shows an example of what an event-trace description

may contain.
The instantiation of OV-6c as Document and its relation to an appropriate instance of

Architecture is shown below.
Object

objectIdentifier pointerCode
125 E038[Architecture]
126 E148[Document]
127 E045[ArchitectureDocument]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 OV-6c 4[ArchElem]
127 1 ArchitectureDocument (OV-6b in Project

X Architecture)
3[OVA]

522 1 Architecture is documented by OV-6c 3[OVA]
523 1 OV-6c documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

4-73

Object
objectIdentifier pointerCode

306 E427[OperationalScenario]
307 E159[EventNodeCrosslink]
308 E159[EventNodeCrosslink]
309 E159[EventNodeCrosslink]
310 E159[EventNodeCrosslink]
311 E159[EventNodeCrosslink]
312 E159[EventNodeCrosslink]
313 E159[EventNodeCrosslink]
314 E159[EventNodeCrosslink]
315 E359[Node]
316 E359[Node]
317 E359[Node]
318 E156[Event]
319 E156[Event]
320 E156[Event]
321 E156[Event]
322 E156[Event]
323 E156[Event]
324 E156[Event]
325 E156[Event]
564 E678[OVA]
565 E678[OVA]
566 E678[OVA]
567 E678[OVA]
568 E678[OVA]
569 E678[OVA]
570 E678[OVA]
571 E678[OVA]
572 E678[OVA]
573 E678[OVA]
574 E678[OVA]
575 E678[OVA]

576 E678[OVA]
577 E678[OVA]
578 E678[OVA]
579 E678[OVA]
580 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
306 1 OV-6c Scenario 4[ArchElem]
307 1 EventNodeCrosslink1[Event 1 for

Node 2(316)]
5[OBR]

308 1 EventNodeCrosslink2[Event 2 for
Node 2(316)]

5[OBR]

309 1 EventNodeCrosslink3[Event 3 for
Node 2(316)]

5[OBR]

310 1 EventNodeCrosslink4[Event 4 for
Node 3(317)]

5[OBR]

311 1 EventNodeCrosslink5[Event 5 for
Node 1(315)]

5[OBR]

4-74

*Identifier *Index name categoryCode
312 1 EventNodeCrosslink6[Event 6 for

Node 2(316)]
5[OBR]

313 1 EventNodeCrosslink7[Event 7 for
Node 1(315)]

5[OBR]

314 1 EventNodeCrosslink8[Event 8 for
Node 3(317)]

5[OBR]

315 1 Node 1 4[ArchElem]
316 1 Node 2 4[ArchElem]
317 1 Node 3 4[ArchElem]
318 1 Event 1 4[ArchElem]
319 1 Event 2 4[ArchElem]
320 1 Event 3 4[ArchElem]
321 1 Event 4 4[ArchElem]
322 1 Event 5 4[ArchElem]
323 1 Event 6 4[ArchElem]
324 1 Event 7 4[ArchElem]
325 1 Event 8 4[ArchElem]
564 1 OV-6c Scenario describes Document 3[OVA]
565 1 Event 1[318] is part of

EventNodeCrosslink 1[307]
3[OVA]

566 1 EventNodeCrosslink 1 to Node2[316] 3[OVA]
567 1 Event 2[319] is part of

EventNodeCrosslink 2[308]
3[OVA]

568 1 EventNodeCrosslink 2 to Node2[316] 3[OVA]
569 1 Event 3[320] is part of

EventNodeCrosslink 3[309]
3[OVA]

570 1 EventNodeCrosslink 3 to Node2[316] 3[OVA]
571 1 Event 4[321] is part of

EventNodeCrosslink 4[310]
3[OVA]

572 1 EventNodeCrosslink 4 to Node3[317] 3[OVA]
573 1 Event 5[322] is part of

EventNodeCrosslink 5[311]
3[OVA]

574 1 EventNodeCrosslink 5 to Node1[315] 3[OVA]
575 1 Event 6[323] is part of

EventNodeCrosslink 6[312]
3[OVA]

576 1 EventNodeCrosslink 6 to Node2[316] 3[OVA]
577 1 Event 7[324] is part of

EventNodeCrosslink 7[313]
3[OVA]

578 1 EventNodeCrosslink 7 to Node1[315] 3[OVA]
579 1 Event 8[325] is part of

EventNodeCrosslink 8[314]
3[OVA]

580 1 EventNodeCrosslink 8 to Node3[317] 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

564 1 306 1 126 1 999 E148-R-E427
565 1 307 1 318 1 999 E156-R-E159
566 1 307 1 316 1 999 E359-R-E159
567 1 308 1 319 1 999 E156-R-E159
568 1 308 1 316 1 999 E359-R-E159
569 1 309 1 320 1 999 E156-R-E159
570 1 309 1 316 1 999 E359-R-E159
571 1 310 1 321 1 999 E156-R-E159

4-75

572 1 310 1 317 1 999 E359-R-E159
573 1 311 1 322 1 999 E156-R-E159
574 1 311 1 315 1 999 E359-R-E159
575 1 312 1 323 1 999 E156-R-E159
576 1 312 1 316 1 999 E359-R-E159
577 1 313 1 324 1 999 E156-R-E159
578 1 313 1 315 1 999 E359-R-E159
579 1 314 1 325 1 999 E156-R-E159
580 1 314 1 317 1 999 E359-R-E159

The relationTypeCode values used have the following meanings:

E148-R-E427 = describes
 E156-R-E159 = is crosslink for
 E359-R-E159 = is the terminator for

4.6.8.4.4 Net-Centric Requirements
The specification of service functionality provider, service consumer, and unanticipated user

at the operational level can be expressed in CADM v1.5 through OperationalRole, which is
linkable to an OV-2 node through instances of ObjectByReference corresponding to the CADM
v1.03 entity NodeOperationalRole. This allows the specification of the role identified for each
node. The applicable codes in the ObjectVersionAssociation table are:

E359-R-E389 = [Node] represents [NodeOperationalRole]

E424-R-E389 = [OperationalRole] is represented by [NodeOperationalRole]

4.6.9 CADM v1.5 Support for Logical Data Model (OV-7)

4.6.9.1 Product Definition
As stated in DoDAF v1.5 Volume II, OV-7 describes the structure of an architecture

domain’s system data types and the structural business process rules (defined in the
architecture’s OV) that govern the system data. It provides a definition of architecture domain
data types, their attributes or characteristics, and their interrelationships.

4.6.9.2 High-Level Description
Figure 4-26 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an OV-7 that is represented as an IDEF1X diagram.

4-76

OV-7 ConceptualDataModel

consists of

C
on

ce
pt

ua
lD

at
aM

od
el

Vi
ew

DataEntity

DataAttribute

described bydisplayed in

Figure 4-26: High-Level Depiction of CADM v1.5 Data Structures for OV-7 Representation (IDEF1X Style)

The DoDAF architecture product OV-7 is expressed in CADM v1.5 as an instance of
Document. The OV-7 can be linked to the appropriate instance of Architecture through the
associative entity ArchitectureDocument (instantiated through ObjectByReference). The OV-7
can be linked to its corresponding instance of InformationAsset, which represents the actual
content of the model.

The data content of a DoDAF architecture product OV-7 in IDEF1X notation is expressed in
CADM v1.5 as an instance of ConceptualModel (a subtype of InformationAsset) that is composed
of entities, represented as instances of DataEntity. For each of the instances of DataEntity, there
may be one or more instances of DataAttribute (i.e., the logical names of the columns in the
physical tables). In addition, the attributes can be further characterized to reflect the data types
used in a given architecture domain’s system using ObjectByReference corresponding to the
CADM v1.03 structure DataDomain (an implicit subtype of InformationAsset with typeCode = 3
[DATA DOMAIN]). Structural business rules are captured by building entity associations with
instances of ObjectByReference corresponding to the CADM v1.03 structure
DataEntityRelationship. The subviews of a ConceptualModel are generated through the relation
of the pertinent instances of DataEntity to ConceptualDataModelView.

4.6.9.3 CADM v1.5 Instantiation
The instantiation of OV-7 as Document and its relation to an appropriate instance of

Architecture is shown below.

4-77

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E679 [OBR]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 OV-7 4[ArchElem]
127 1 ArchitectureDocument (OV-7 in Project

X Architecture)
3[OVA]

522 1 Architecture is documented by OV-7 3[OVA]
523 1 OV-7 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The next step is to relate the OV-7 to the instances of InformationAsset that corresponds to
the actual content of the model. The pertinent subtypes are DataEntity, DataAttribute, and
ConceptualDataModel. To represent the example shown in Figure 4-27, we need to instantiate the
following entries:

1. Six instances of DataEntity
2. 15 instances of DataAttribute
3. One instance of ConceptualDataModel

4-78

rel E to BE Assoc

rel B to BE Assocrel A-B

Entity E
Ent E ID
attribute e1

Entity B-E Assoc
Ent B ID (FK)
Ent E ID (FK)
attr BE-Assoc 1

Entity D
Ent A ID (FK)
attribute d1

Entity C
Ent A ID (FK)
attribute c1

Entity B
Ent B ID
attribute b1
Ent A ID (FK)

Entity A
Ent A ID
attribute a1
attribute a2

Figure 4-27: OV-7 – Template

The instance tables below show how this is expressed in CADM v1.5.

Object
objectIdentifier pointerCode

214 E112[ConceptualModel]
215 E215[ConceptualDataModelView]
216 E679 [OBR for

ConceptualDataModelViewDataEntity]
217 E679 [OBR for

ConceptualDataModelViewDataEntity]
218 E679 [OBR for

ConceptualDataModelViewDataEntity]
219 E679 [OBR for

ConceptualDataModelViewDataEntity]
220 E679 [OBR for

ConceptualDataModelViewDataEntity]
221 E679 [OBR for

ConceptualDataModelViewDataEntity]
315 E133[DataEntity]
316 E133[DataEntity]
317 E133[DataEntity]
318 E133[DataEntity]
319 E133[DataEntity]
320 E133[DataEntity]
321 E118[DataAttribute]
322 E118[DataAttribute]
323 E118[DataAttribute]
324 E118[DataAttribute]
325 E118[DataAttribute]
326 E118[DataAttribute]
327 E118[DataAttribute]
328 E118[DataAttribute]
329 E118[DataAttribute]

4-79

objectIdentifier pointerCode
330 E118[DataAttribute]
331 E118[DataAttribute]
332 E118[DataAttribute]
333 E118[DataAttribute]
334 E118[DataAttribute]
335 E118[DataAttribute]
622 E678[OVA]
623 E678[OVA]
624 E678[OVA]
625 E678[OVA]
626 E678[OVA]
627 E678[OVA]
628 E678[OVA]
629 E678[OVA]
630 E678[OVA]
631 E678[OVA]
632 E678[OVA]
633 E678[OVA]
634 E678[OVA]
635 E678[OVA]
636 E678[OVA]
637 E678[OVA]
638 E678[OVA]
639 E678[OVA]
640 E678[OVA]
641 E678[OVA]
642 E678[OVA]
643 E678[OVA]
644 E678[OVA]
645 E678[OVA]
646 E678[OVA]
647 E678[OVA]
648 E678[OVA]
649 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
214 1 Logical Data Model OV-7 Template 4[ArchElem]
215 1 Logical Data Model OV-7 View 1 4[ArchElem]
216 1 CDMVDE01[Entity A in OV-7(215)] 5[OBR]
217 1 CDMVDE02[Entity B in OV-7(215)] 5[OBR]
218 1 CDMVDE01[Entity C in OV-7(215)] 5[OBR]
219 1 CDMVDE01[Entity D in OV-7(215)] 5[OBR]
220 1 CDMVDE01[Entity B-E in OV-7(215)] 5[OBR]
221 1 CDMVDE01[Entity E in OV-7(215)] 5[OBR]
315 1 Entity A 4[ArchElem]
316 1 Entity B 4[ArchElem]
317 1 Entity C 4[ArchElem]
318 1 Entity D 4[ArchElem]
319 1 Entity B-E Assoc 4[ArchElem]
320 1 Entity E 4[ArchElem]
321 1 Ent A ID 4[ArchElem]
322 1 Attribute a1 4[ArchElem]

4-80

*Identifier *Index name categoryCode
323 1 Attribute a2 4[ArchElem]
324 1 Ent B ID 4[ArchElem]
325 1 Attribute b1 4[ArchElem]
326 1 Ent A ID (FK) 4[ArchElem]
327 1 Ent A ID (FK) 4[ArchElem]
328 1 Attribute c1 4[ArchElem]
329 1 Ent A ID (FK) 4[ArchElem]
330 1 Attribute d1 4[ArchElem]
331 1 Ent B ID (FK) 4[ArchElem]
332 1 Ent E ID (FK) 4[ArchElem]
333 1 Attr BE-Assoc 1 4[ArchElem]
334 1 Ent E ID 4[ArchElem]
335 1 Attribute e1 4[ArchElem]
622 1 OV-7 View 1 is in OV-7 Template 3[OVA]
623 1 CDMVDE01 is in OV-7 View1[215] 3[OVA]
624 1 Entity A is part of CDMVDE01 3[OVA]
625 1 Ent A ID is part of Entity A 3[OVA]
626 1 Attribute a1 is part of Entity A 3[OVA]
627 1 Attribute a2 is part of Entity A 3[OVA]
628 1 CDMVDE02 is in OV-7[215] 3[OVA]
629 1 Entity B is part of CDMVDE02 3[OVA]
630 1 Ent B ID ia part of Entity B 3[OVA]
631 1 Attribute b1 is part of Entity B 3[OVA]
632 1 Ent A ID (FK) is part of Entity B 3[OVA]
633 1 CDMVDE03 is in OV-7[215] 3[OVA]
634 1 Entity C is part of CDMVDE03 3[OVA]
635 1 Ent A ID (FK) is part of Entity C 3[OVA]
636 1 Attribute c1 is part of Entity C 3[OVA]
637 1 CDMVDE04 is in OV-7[215] 3[OVA]
638 1 Entity D is part of CDMVDE04 3[OVA]
639 1 Ent A ID (FK) is part of Entity D 3[OVA]
640 Attribute d1 is part of Entity D 3[OVA]
641 1 CDMVDE05 is in OV-7[215] 3[OVA]
642 1 Entity B-E Assoc is part of CDMVDE05 3[OVA]
643 1 Ent B ID (FK) is part of Entity B-E Assoc 3[OVA]
644 1 Ent E ID (FK) is part of Entity B-E Assoc 3[OVA]
645 1 Attr BE-Assoc 1 is part of Entity B-E Assoc 3[OVA]
646 1 CDMVDE06 is in OV-7[214] 3[OVA]
647 1 Entity E is part of CDMVDE06 3[OVA]
648 1 Ent E ID is part of Entity E 3[OVA]
649 1 Attribute e1is part of Entity E 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

622 1 215 1 214 1 999 E112-R-E113
623 1 216 1 215 1 999 E113-R-E114
624 1 216 1 315 1 999 E133-R-E114
625 1 321 1 315 1 999 E133-R-E118
626 1 322 1 315 1 999 E133-R-E118
627 1 323 1 315 1 999 E133-R-E118

4-81

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

628 1 217 1 215 1 999 E113-R-E114
629 1 217 1 316 1 999 E133-R-E114
630 1 324 1 316 1 999 E133-R-E118
631 1 325 1 316 1 999 E133-R-E118
632 1 326 1 316 1 999 E133-R-E118
633 1 218 1 215 1 999 E113-R-E114
634 1 218 1 317 1 999 E133-R-E114
635 1 327 1 317 1 999 E133-R-E118
636 1 328 1 317 1 999 E133-R-E118
637 1 219 1 215 1 999 E113-R-E114
638 1 219 1 318 1 999 E133-R-E114
639 1 329 1 318 1 999 E133-R-E118
640 1 330 1 318 1 999 E133-R-E118
641 1 220 1 215 1 999 E113-R-E114
642 1 220 1 319 1 999 E133-R-E114
643 1 331 1 319 1 999 E133-R-E118
644 1 332 1 319 1 999 E133-R-E118
645 1 333 1 319 1 999 E133-R-E118
646 1 221 1 215 1 999 E113-R-E114
647 1 221 1 320 1 999 E133-R-E114
648 1 334 1 320 1 999 E133-R-E118
649 1 335 1 320 1 999 E133-R-E118

The relationTypeCode values used have the following meanings:

E112-R-E113 = is represented in
E113-R-E114 = displays
E133-R-E114 = is displayed in
E133-R-E118 = is described by

4.6.9.4 Net-Centric Requirements
The specification of discovery metadata at the operational level can be expressed in CADM

v1.5 through DiscoveryMetadata, which is linkable to Document through instances of
ObjectByReference corresponding to the CADM v1.03 entity DocumentDiscoveryMetadata. The
latter is linkable to InformationAsset through instances of ObjectByReference corresponding to
the CADM v1.03 entity InformationAssetDocument. To do that, one needs to create the
respective instance of DocumentDiscoveryMetadata and create a link from DiscoveryMetadata in
the ObjectVersionAssociation table with the relationTypeCode = E147-R-E152 (is used to
discover). Next, a link can be created from DocumentDiscoveryMetadata to
InformationAssetDocument in the ObjectVersionAssociation table with the relationTypeCode =
E152-R-E217 (may apply to). The latter can be then related to the respective instance of
InformationAsset in the ObjectVersionAssociation table with the relationTypeCode = E215-R-
E217 (is cited in).

4-82

4.6.10 CADM v1.5 Support for Systems and Services Interface Description (SV-1)

4.6.10.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-1 depicts systems nodes and the systems

resident at these nodes to support organizations/human roles represented by operational nodes of
the OV-2. SV-1 also identifies the interfaces between systems and systems at nodes.

4.6.10.2 High-Level Description
Figure 4-28 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-1.

SV-1

consists of

originates at terminates at

Role

NodeSystem

System Interface Description

associated to Node associated toSystem

TechnicalInterface

IT Standard

Figure 4-28: High-Level Depiction of CADM v1.5 Data Structures for SV-1 Representation

The DoDAF architecture product SV-1 as an architecture product is expressed in CADM
v1.5 as an instance of Document. This instance can be connected to the appropriate instance of
Architecture that it is part of. The instance of Document links to the actual data content of the SV-
1 through one or more instances of the CADM v1.03 entity SystemInterfaceDescriptionElement
(modeled via ObjectByReference).

The function of these instances of SystemInterfaceDescriptionElement is to collect all the
pertinent instances of TechnicalInterface that make the SV-1. The TechnicalInterface is the
CADM v1.5 entity that serves as the focus for the specifications of the logical interfaces. System
associations can be linked to TechnicalInterface as well as node associations and the instances of
system at a node that either send or receive information Figure 4-29. Each TechnicalInterface can
also be associated to InformationTechnologyStandard (a subtype of Agreement), which has a
number of subtypes that allow the specification of applicable standards for the TechnicalInterface.
Where the means for transfer are known, they can be expressed as instances of
CommunicationMedium, which, in turn, can be linked to TechnicalInterface.

4-83

4.6.10.3 CADM v1.5 Instantiation
The figure below shows an example of what systems interface description may contain.

System 4

System 1

System 5

System 2

System 1

Node A

Node C

Node B

System 1

System 3

WAN
Network

W
AN

Netw
ork

communications

network node 1

com
m

unications

network node 2

L

M

N

I
J

H

L

M Interface 0

key interface 3Interface 2

Interface 1

Interface 4

Interface 5

Figure 4-299: SV-1 Showing Node Edge to Node Edge and Systems-Systems Interface Example

The instantiation of SV-1 as Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
11141 E148[Document]

127 E679[OBR]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]

11141 1 SV-1 4[ArchElem]
127 1 ArchitectureDocument (SV-1 in Project X

Architecture)
5[OBR]

522 1 Architecture is documented by SV-1 3[OVA]
523 1 SV-1 documents Architecture 3[OVA]

4-84

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 11141 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The SV-1 is linked to the actual content of the product through the CADM v1.03 entity
SystemInterfaceDescriptionElement.

The representation of the data for an SV-1 in CADM v1.5 requires as the first step the
specification of the systems involved. The entries corresponding to the notional example are
given below.

Object
objectIdentifier pointerCode

7501 E563 [System]
7502 E563 [System]
7503 E563 [System]
7504 E563 [System]
7505 E563 [System]
7506 E563 [System]

ObjectVersion
*Identifier *Index name categoryCode

7501 1 System 1 4 [AE]
7502 1 System 2 4 [AE]
7503 1 System 3 4 [AE]
7504 1 System 4 4 [AE]
7505 1 System 5 4 [AE]
7506 1 Shared Database G 4 [AE]

In the example, there are two system associations. The entries in the
ObjectVersionAssociation table are shown below (the instances for the corresponding Object and
ObjectVersion are not shown).

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

125001 1 7501 1 7504 1 465 NULL
125002 1 7504 1 7506 1 465 NULL

The value categoryCode = 465 [SystemAssociation]

4-85

According to the figure for the notional example, there is one Network specified for this SV-
1. The tables below show the instantiation for this portion of the product.

Object
objectIdentifier pointerCode

107 E333[Network]

ObjectVersion
*Identifier *Index name categoryCode

107 1 Fire Direction Net 4 [AE]

There are five intances of Node.
Object

objectIdentifier pointerCode
15101 E359[Node]
15102 E359[Node]
15103 E359[Node]
15104 E359[Node]
15105 E359[Node]

ObjectVersion

*Identifier *Index Name categoryCode
15101 1 Node A 4 [AE]
15102 1 Node B 4 [AE]
15103 1 Node C 4 [AE]
15104 1 Comm Network Node 1 4 [AE]
15105 1 Comm Network Node 2 4 [AE]

There are six instances of NodeAssociation among these five nodes. The entries in the
ObjectVersionAssociation table are shown below the Object and ObjectVersion tables.

Object
objectIdentifier pointerCode

115101 E678[OVA]
115102 E678[OVA]
115103 E678[OVA]
115104 E678[OVA]
115105 E678[OVA]
115106 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
115101 1 Node A – Node B 3[OVA]
115102 1 Node A – Node C 3[OVA]
115103 1 Node B – Node C 3[OVA]
115104 1 Node C – Node C 3[OVA]
115105 1 Node A – Comm Network Node 1 3[OVA]
115106 1 Node C – Comm Network Node 2 3[OVA]

4-86

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

115101 1 15101 1 15102 1 362 NULL
115102 1 15101 1 15103 1 362 NULL
115103 1 15102 1 15103 1 362 NULL
115104 1 15103 1 15103 1 362 NULL
115105 1 15101 1 15104 1 362 NULL
115106 1 15103 1 15105 1 362 NULL

The value categoryCode = E362 [NodeAssociation]

There are two instances of NetworkNodeAssociation. The entries in the tables below show
the corresponding instantiation.

Object
objectIdentifier pointerCode

35101 E678[OVA]
35102 E678[OVA]
35103 E678[OVA]
35104 E678[OVA]
35121 E679[OBR]
35122 E679[OBR]

ObjectVersion

*Identifier *Index Name categoryCode
35101 1 Network – Connection 1 3[OVA]
35102 1 Network – Connection 1 3[OVA]
35103 1 Network – Connection 2 3[OVA]
35104 1 Network – Connection 2 3[OVA]
35121 1 Network – Connection 1 5[OBR]
35122 1 Network – Connection 2 5[OBR]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

35101 1 107 1 35121 1 999 E333-R-E350
35102 1 15104 1 35121 1 999 E359-R-E350
35103 1 107 1 35122 1 999 E333-R-E350
35104 1 15105 1 35122 1 999 E359-R-E350

The relationTypeCode values used have the following meanings:

E333-R-E350 = [Network] has as a participant [NetworkNode]
E359-R-E350 = [Node] participates in [NetworkNode]

The nodes are associated with the systems as follows.

4-87

Object
objectIdentifier pointerCode

25101 E678[OVA]
25102 E678[OVA]
25103 E678[OVA]
25104 E678[OVA]
25105 E678[OVA]
25106 E678[OVA]
25107 E678[OVA]
25108 E678[OVA]
25109 E678[OVA]
25110 E678[OVA]
25111 E678[OVA]
25112 E678[OVA]
25113 E678[OVA]
25114 E678[OVA]
25121 E679[OBR]
25122 E679[OBR]
25123 E679[OBR]
25124 E679[OBR]
25125 E679[OBR]
25126 E679[OBR]
25127 E679[OBR]

ObjectVersion

*Identifier *Index Name categoryCode
25101 1 Node A System 1 3[OVA]
25102 1 Node A System 1 3[OVA]
25103 1 Node A System 5 3[OVA]
25104 1 Node A System 5 3[OVA]
25105 1 Node B System 1 3[OVA]
25106 1 Node B System 1 3[OVA]
25107 1 Node B System 2 3[OVA]
25108 1 Node B System 2 3[OVA]
25109 1 Node B System 3 3[OVA]
25110 1 Node B System 3 3[OVA]
25111 1 Node C System 1 3[OVA]
25112 1 Node C System 1 3[OVA]
25113 1 Node C System 4 3[OVA]
25114 1 Node C System 4 3[OVA]
25121 1 Node A System 1 5[OBR]
25122 1 Node A System 5 5[OBR]
25123 1 Node B System 1 5[OBR]
25124 1 Node B System 2 5[OBR]
25125 1 Node B System 3 5[OBR]
25126 1 Node C System 1 5[OBR]
25127 1 Node C System 4 5[OBR]

4-88

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

25101 1 15101 1 25121 1 999 E359-R-E396
25102 1 7501 1 25121 1 999 E563-R-E396
25103 1 15101 1 25122 1 999 E359-R-E396
25104 1 7505 1 25122 1 999 E563-R-E396
25105 1 15102 1 25123 1 999 E359-R-E396
25106 1 7501 1 25123 1 999 E563-R-E396
25107 1 15102 1 25124 1 999 E359-R-E396
25108 1 7502 1 25124 1 999 E563-R-E396
25109 1 15102 1 25125 1 999 E359-R-E396
25110 1 7503 1 25125 1 999 E563-R-E396
25111 1 15103 1 25126 1 999 E359-R-E396
25112 1 7501 1 25126 1 999 E563-R-E396
25113 1 15104 1 25127 1 999 E359-R-E396
25114 1 7504 1 25127 1 999 E563-R-E396

The relationTypeCode values used have the following meanings:

E359-R-E396 = [Node] is supported by [NodeSystem]
E563-R-E396 = [System] supports the functions of [NodeSystem]

There are six instances of SystemFunction, captured in CADM v1.5 as instances of
ProcessActivity.

Object
objectIdentifier pointerCode

1201 E678[OVA]
1202 E678[OVA]
1203 E678[OVA]
1204 E678[OVA]
1205 E678[OVA]
1206 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
1201 1 System Function H 3[OVA]
1202 1 System Function I 3[OVA]
1203 1 System Function J 3[OVA]
1204 1 System Function L 3[OVA]
1205 1 System Function M 3[OVA]
1206 1 System Function N 3[OVA]

There are six associations among the Systems and ProcessActivities.

4-89

Object
objectIdentifier pointerCode

45101 E678[OVA]
45102 E678[OVA]
45103 E678[OVA]
45104 E678[OVA]
45105 E678[OVA]
45106 E678[OVA]
45107 E678[OVA]
45108 E678[OVA]
45109 E678[OVA]
45110 E678[OVA]
45111 E678[OVA]
45112 E678[OVA]
45121 E679[OBR]
45122 E679[OBR]
45123 E679[OBR]
45124 E679[OBR]
45125 E679[OBR]
45126 E679[OBR]

ObjectVersion

*Identifier *Index Name categoryCode
45101 1 Node A System 1 3[OVA]
45102 1 Node A System 1 3[OVA]
45103 1 Node A System 5 3[OVA]
45104 1 Node A System 5 3[OVA]
45105 1 Node B System 1 3[OVA]
45106 1 Node B System 1 3[OVA]
45107 1 Node B System 2 3[OVA]
45108 1 Node B System 2 3[OVA]
45109 1 Node B System 3 3[OVA]
45110 1 Node B System 3 3[OVA]
45111 1 Node C System 1 3[OVA]
45112 1 Node C System 1 3[OVA]
45121 1 System 1 Function L 5[OBR]
45122 1 System 1 Function M 5[OBR]
45123 1 System 3 Function N 5[OBR]
45124 1 System 4 Function H 5[OBR]
45125 1 System 4 Function I 5[OBR]
45126 1 System 4 Function J 5[OBR]

4-90

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

45101 1 7501 1 45121 1 999 E563-R-E597
45102 1 1204 1 45121 1 999 E486-R-E597
45103 1 7501 1 45122 1 999 E563-R-E597
45104 1 1205 1 45122 1 999 E486-R-E597
45105 1 7503 1 45123 1 999 E563-R-E597
45106 1 1206 1 45123 1 999 E486-R-E597
45107 1 7504 1 45124 1 999 E563-R-E597
45108 1 1201 1 45124 1 999 E486-R-E597
45109 1 7504 1 45125 1 999 E563-R-E597
45110 1 1202 1 45125 1 999 E486-R-E597
45111 1 7504 1 45126 1 999 E563-R-E597
45112 1 1203 1 45126 1 999 E486-R-E597

The relationTypeCode values used have the following meanings:

E486-R-E597 = [ProcessActivity] is supported by [SystemProcessActivity]
E563-R-E597 = [System] is designed to provide [SystemProcessActivity]

There are eight instances of TechnicalInterface. Their instantiation is shown in the following
tables.

Object
objectIdentifier pointerCode

10701 E636[TechnicalInterface]
10702 E636[TechnicalInterface]
10703 E636[TechnicalInterface]
10704 E636[TechnicalInterface]
10705 E636[TechnicalInterface]
10706 E636[TechnicalInterface]
10707 E636[TechnicalInterface]
10708 E636[TechnicalInterface]

ObjectVersion

*Identifier *Index name categoryCode
10701 1 I/F 0 (A-B) 4 [AE]
10702 1 I/F 2 (A-C) 4 [AE]
10703 1 Key I/F 3 (B-C) 4 [AE]
10704 1 I/F 1 (A1-B1) 4 [AE]
10705 1 I/F 4 (A5-B3) 4 [AE]
10706 1 Key I/F 3 (B1-C1) 4 [AE]
10707 1 I/F 5 (B3-C4) 4 [AE]
10708 1 Key I/F 6 (C1-C4) 4 [AE]

There are four instances of TechnicalInterfaceAssociation. The entries in the
ObjectVersionAssociation table are shown below the Object and ObjectVersion tables.

4-91

Object
objectIdentifier pointerCode

515101 E678[OVA]
515102 E678[OVA]
515103 E678[OVA]
515104 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
515101 1 I/F 0 (A-B) to I/F 1 (A1-B1) 3[OVA]
515102 1 I/F 0 (A-B) to I/F 4 (A5-B3) 3[OVA]
515103 1 Key I/F 3 (B-C) to Key I/F 3 (B1-C1) 3[OVA]
515104 1 Key I/F 3 (B-C) to I/F 5 (B3-C4) 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

515101 1 10701 1 10704 1 E637 NULL
515102 1 10701 1 10705 1 E637 NULL
515103 1 10703 1 10706 1 E637 NULL
515104 1 10703 1 10707 1 E637 NULL

The value categoryCode = E637 [TechnicalInterfaceAssociation]

The SV-1 consists of several SystemInterfaceDescriptionElements that are linked to
TechnicalInterfaces.

After everything has been defined and associated above, one can instantiate the rows
corresponding to the CADM entity SystemInterfaceDescriptionElement. The tables below show
how this is done for the instances of SystemInterfaceDescriptionElement using the instances of
Technicalnterface already created.

Object
objectIdentifier pointerCode

201 E678[OVA]
202 E678[OVA]
203 E678[OVA]
204 E678[OVA]
205 E678[OVA]
206 E678[OVA]
207 E678[OVA]
208 E678[OVA]
301 E679[OBR]
302 E679[OBR]
303 E679[OBR]
304 E679[OBR]
305 E679[OBR]
306 E679[OBR]
307 E679[OBR]
308 E679[OBR]

4-92

ObjectVersion
*Identifier *Index name categoryCode

301 1 SIDE 1 5[OBR]
302 1 SIDE 2 5[OBR]
303 1 SIDE 3 5[OBR]
304 1 SIDE 4 5[OBR]
305 1 SIDE 5 5[OBR]
306 1 SIDE 6 5[OBR]
307 1 SIDE 7 5[OBR]
308 1 SIDE 8

ObjectByReference

*Identifier *Index categoryCode
301 1 E587[SystemInterfaceDescriptionElement]
302 1 E587[SystemInterfaceDescriptionElement]
303 1 E587[SystemInterfaceDescriptionElement]
304 1 E587[SystemInterfaceDescriptionElement]
305 1 E587[SystemInterfaceDescriptionElement]
306 1 E587[SystemInterfaceDescriptionElement]
307 1 E587[SystemInterfaceDescriptionElement]
308 1 E587[SystemInterfaceDescriptionElement]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

201 1 10701 1 301 1 999 E636-R-E587
202 1 10702 1 302 1 999 E636-R-E587
203 1 10703 1 303 1 999 E636-R-E587
204 1 10704 1 304 1 999 E636-R-E587
205 1 10705 1 305 1 999 E636-R-E587
206 1 10706 1 306 1 999 E636-R-E587
207 1 10707 1 307 1 999 E636-R-E587
208 1 10708 1 308 1 999 E636-R-E587

The relationTypeCode values used have the following meanings:

E636-R-E587 = [TechnicalInterface] is cited for [SystemInterfaceDescriptionElement]

4.6.10.4 Net-Centric Requirements for SV-1
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to SoftwareType through instances of ObjectByReference
corresponding to SoaServiceSoftwareType. The applicable codes in the ObjectVersionAssociation
table are:

E682-R-E686 = [SoaService] uses [SoaServiceSoftwareType]

E544-R-E686 = [SoftwareType] is used in [SoaServiceSoftwareType].

4-93

4.6.11 CADM v1.5 Support for Systems and Services Communications Description (SV-
2)

4.6.11.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-2 depicts pertinent information about

communications systems, communications links, and communications networks. SV-2
documents the kinds of communications media that support the systems and implement their
interfaces as described in SV-1. Thus, SV-2 shows the communications details of SV-1
interfaces that automate aspects of the needlines represented in OV-2.

4.6.11.2 High-Level Description
Figure 4-30 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-2.

SV-2

System Communication
Description

consists of

InformationTechnologyStandard

CommunicationMedium

Capability

System, Equipment, Facility

logical needline

Network

associated toNode

producer consumer

Figure 4-30: High-Level Depiction of CADM v1.5 Data Structures for SV-2 Representation

The DoDAF architecture product SV-2 as an architecture product is expressed in CADM
v1.5 as an instance of Document. This instance can be connected to the appropriate instance of
Architecture that it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference). The instance of Document is linked to the actual data content of the SV-2
through one or more instances of Network. Applicable systems can be related to Network via the
CADM v1.03 entity NetworkSystem (modeled via ObjectByReference). Similarly, the
communication media and the communication systems employed can be related to Network. The
composition of the Network is done through pairwise node associations. The CADM v1.03 entity
NodeLink (a subtype of NodeAssociation) is used for that purpose. For each NodeLink, one can
specify the applicable CommunicationMedium and InformationTechnologyStandard, as well as the
specific Capability.

4-94

4.6.11.3 CADM v1.5 Instantiation
The Figure 31 below shows a notional example of an SV-2 product, where nodes are linked to
other nodes through specific communication interfaces.

Figure 4-31: Systems Communications Description Example

The SV-2 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

8115 E038[Architecture]
8116 E148[Document]
8117 E679[OBR]
8522 E678[OVA]
8523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
8115 1 Program Architecture C08 4[ArchElem]
8116 1 Notional Systems Communications

Description
4[ArchElem]

8117 1 ArchitectureDocument (SV-2 in Program
Architecture C08)

5[OBR]

8522 1 Architecture is documented by SV-2 3[OVA]
8523 1 SV-2 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
8117 1 E045[ArchitectureDocument]

4-95

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

8522 1 8115 1 8117 1 999 E038-R-E045
8523 1 8116 1 8117 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

As with the OV-2 product discussed in the preceding sections for the content of the SV-2, one
instantiates Network and the nodes that it comprises. The instance tables below show how this is
done in CADM v1.5.

Object
objectIdentifier pointerCode

207 E333[Network]
217 E359[Node]
218 E359[Node]
219 E359[Node]
247 E679[OBR]
248 E679[OBR]
249 E679[OBR]
524 E678[OVA]
525 E678[OVA]
526 E678[OVA]
527 E678[OVA]
528 E678[OVA]
529 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

207 1 SV-2 Level 1 Decomposition 4[ArchElem]
217 1 Node A 4[ArchElem]
218 1 Node B 4[ArchElem]
219 1 Node C 4[ArchElem]
247 1 NetworkNodeA (Node A in SV-2[116]) 5[OBR]
248 1 NetworkNodeB (Node B in SV-2[116]) 5[OBR]
249 1 NetworkNodeC (Node C in SV-2[116]) 5[OBR]
524 1 NetworkNodeA[247] is part of Network 3[OVA]
525 1 NodeA[217] is part of NetworkNodeA 3[OVA]
526 1 NetworkNodeB[248] is part of Network 3[OVA]
527 1 NodeB[218] is part of NetworkNodeB 3[OVA]
528 1 NetworkNodeC[249] is part of Network 3[OVA]
529 1 NodeB[219] is part of NetworkNodeC 3[OVA]

4-96

ObjectByReference
*Identifier *Index categoryCode

247 1 E350[NetworkNode]
248 1 E350[NetworkNode]
249 1 E350[NetworkNode]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

524 1 207 1 247 1 999 E333-R-E350
525 1 217 1 247 1 999 E359-R-E350
526 1 207 1 248 1 999 E333-R-E350
527 1 218 1 248 1 999 E359-R-E350
528 1 207 1 249 1 999 E333-R-E350
529 1 219 1 249 1 999 E359-R-E350

The relationTypeCode values used have the following meanings:

E359-R-E350 = participates in
E333-R-E350 = has as a participant

The relationships among nodes are done through instances of ObjectVersionAssociation
corresponding to the CADM v1.03 entity NodeAssociation. For the node associations:

Object
objectIdentifier pointerCode

534 E678[OVA]
535 E678[OVA]
536 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
534 1 Node A to Node B 3[OVA]
535 1 Node A to Node C 3[OVA]
536 1 Node B to Node C 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

534 1 217 1 218 1 E362 NULL
535 1 217 1 219 1 E362 NULL
536 1 218 1 219 1 E362 NULL

To relate the instance of Network to the instance of Document:
Object
objectIdentifier pointerCode

563 E678[OVA]

4-97

ObjectVersion
*Identifier *Index name categoryCode

563 1 Network to SV-2 Document 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

563 1 207 1 116 1 999 E333-R-E369

The relationTypeCode values used have the following meanings:

E333-R-E369 = is used to specify
Associate NodeAssociations and NodeLink. For this example, the tables below show an

example of the association between NodeAssociation (Node A to Node B) and NodeLink and the
association of NodeLink and CommunicationMedium through the characterization of
NodeLinkCommunicationMedium.

Object
objectIdentifier pointerCode

605 E679[OBR]
606 E679[OBR]
710 E102[CommunicationMedium]
815 E678[OVA]
816 E678[OVA]
817 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

605 1 Node Link 1 5[OBR]
606 1 NodeLinkCommunicationMedium1

(Communication Medium 1 is part of
Node Link 1)

5[OBR]

710 1 Communication Medium 1 4[ArchElem]
815 1 Node A to Node B[534] to Node

Link 1
3[OVA]

816 1 NodeLinkCommunication1 is part of
Communication Medium 1

3[OVA]

817 1 NodeLinkCommunication1 is part of
Node Link 1

3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

815 1 605 1 534 1 999 E362-S-E378
816 1 606 1 710 1 999 E102-R-E381
817 1 606 1 605 1 999 E378-R-E381

The relationTypeCode values used have the following meanings:

E362-S-E378 = is a
E102-R-E381 = is a mode for
E378-R-E381 = has

4-98

4.6.11.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to EquipmentType through instances of ObjectByReference
corresponding to SoaServiceEquipmentType. The applicable codes in the
ObjectVersionAssociation table are:

E682-R-E687 = [SoaService] uses [SoaServiceEquipmentType]

E153-R-E687 = [EquipmentType] is used in [SoaServiceEquipmentType]

4.6.12 CADM v1.5 Support for Systems-Systems Matrix, Services-Systems Matrix, and
Services-Services Matrix (SV-3)

4.6.12.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-3 provides detail on the interface characteristics

described in SV-1 for the architecture, arranged in matrix form.

4.6.12.2 High-Level Description
Figure 4-32 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-3.

SV-3

consists of

SystemAssociationMeans

System System Matrix

associated toSystem

TechnicalInterface

Sys A Sys B

Sys C

Sys D

Sys E

System System Matrix Element

InformationAsset

Figure 4-32: High-Level Depiction of CADM v1.5 Data Structures for SV-3 Representation

The DoDAF architecture product SV-3 is expressed in CADM v1.5 as an instance of
Document. The SV-3 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference). As shown in the template provided in DoDAF v1.5 Volume II, the SV-3 is a
presentation format for system-to-system associations that highlights the types of interface

4-99

characteristics for each pair of systems. All of this information is captured in CADM v1.5
through TechnicalInterface (see SV-1 above). The content of the SV-3 is expressed though
instances of the CADM v1.03 entity SystemSystemMatrixElement that links the system pairs
(modeled through SystemAssociation and SystemAssociationMeans) as well as the applicable
instance of TechnicalInterface. The semantics of the “dots” in the matrix cells (see template) can
also be specified in CADM v1.5 by creating a set of instances of InformationAsset (typeCode = 3
[DATA-DOMAIN], and subtypeCode = 31 [DATA-DOMAIN-LIST]) and linking the pertinent value to
each SystemSystemMatrixElement, where applicable.

4.6.12.3 CADM v1.5 Instantiation
The following instance tables show how the SV-3 product is represented in CADM v1.5. The

example follows Figure 4-33. For simplicity, only the data for the cells corresponding to the
systems GCCS, MCS/P and ASAS are shown.

GCCS MCS/P FBCB2 M1A2

SEP
M2A3 ASAS CGS GBCS IMETS IREMBAS

GCCS
MCS/P
FBCB2
M1A2 SEP
M2A3
ASAS
CGS
GBCS
IMETS
IREMBAS
AFATDS
BFIST
Paladin
FAAVS
MLRS
FAADC3I
Avenger
BSFV-E
GBS
CSSCS
SAMS
SAAS
SPDS-R
DAMMSR
ULLS
….
….

Figure 4-33: Notional Example of an SV-3 Product

The instantiation of SV-3 as Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
11144 E148[Document]

129 E679[OBR]
524 E678[OVA]
525 E678[OVA]

4-100

ObjectVersion
*Identifier *Index Name categoryCode

125 1 Project X Architecture 4[ArchElem]
11144 1 Example SV-3 4[ArchElem]

129 1 ArchitectureDocument (SV-3 in Project X
Architecture)

5[OBR]

524 1 Architecture is documented by Example
SV-3

3[OVA]

525 1 Example SV-3 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
129 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

524 1 125 1 129 1 999 E038-R-E045
525 1 11144 1 129 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The following instance tables describe the GCCS, MCS/P and ASAS systems and their
associations:

Object
objectIdentifier pointerCode

3741 E563[System]
3742 E563[System]
3746 E563[System]
828 E565[SystemAssociation]
829 E565[SystemAssociation]
724 E678[OVA]
725 E678[OVA]
726 E678[OVA]
727 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
3741 1 Global Command and Control System

(GCCS)
4[ArchElem]

3742 1 Maneuver Control System (MCS/P) 4[ArchElem]
3746 1 All Sources Analysis System (ASAS) 4[ArchElem]
828 1 GCCS associates with MCS/P 5[OBR]
829 1 GCCS associates with ASAS 5[OBR]
724 1 GCCS and MCS/P 3[OVA]
725 1 MCS/P and GCCS 3[OVA]
726 1 GCCS and ASAS 3[OVA]
727 1 ASAS and GCCS 3[OVA]

4-101

ObjectByReference
*Identifier *Index categoryCode

828 1 E565[SystemAssociation]
829 1 E565[SystemAssociation]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

724 1 3741 1 828 1 E565
[SysAssn]

NULL

725 1 3742 1 828 1 E565
[SysAssn]

NULL

726 1 3741 1 829 1 E565
[SysAssn]

NULL

727 1 3746 1 829 1 E565
[SysAssn]

NULL

Once the systems have been defined and their associations established, one can proceed to

specify the instances of applicable TechnicalInterface and link them to the corresponding records
of SystemSystemMatrixElement.

Object
objectIdentifier pointerCode

10801 E636[TechnicalInterface]
10802 E636[TechnicalInterface]
21101 E612[SystemSystemMatrixElement]
21102 E612[SystemSystemMatrixElement]

741 E678[OVA]
742 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
10801 1 GCCS-MCS/P 4[ArchElem]
10802 1 GCCS-ASAS 4[ArchElem]
21101 1 GCCS relates to MCS/P 4[ArchElem]
21102 1 GCCS relates to ASAS 4[ArchElem]

741 1 GCCS-MCS/P describes SSME 3[OVA]
742 1 GCCS-ASAS describes SSME 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

741 1 10801 1 21101 1 999 E636-R-E612
742 1 10802 1 21102 1 999 E636-R-E612

The relationTypeCode values used have the following meanings:

E636-R-E612 = describes
In CADM v1.5, it is possible to specify the semantics of the “dots” in the SV-3 matrix. This

is done via the CADM v1.03 entity DataDomainListValue, a many-child of DataDomainList (a
subtype of DataDomain, which in turn is a subtype of InformationAsset). The InformationAsset

4-102

has typeCode=3 (DataDomain). There is only one DataDomainListValue, since the meaning of
“dot present” is simply “Yes.”

Object

objectIdentifier pointerCode
901 E215[InformationAsset]
756 E127[DataDomain]
757 E128[DataDomainList]
758 E129[DataDomainListValue]
760 E678[OVA]
761 E678[OVA]
762 E678[OVA]
763 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
901 1 GCCS-MCS/P 4[ArchElem]
756 1 Data domain values 5[OBR]
757 1 List of matrix cell values 5[OBR]
758 1 Solid Dot is in matrix 5[OBR]
760 1 InformationAsset is a DataDomain 3[OVA]
761 1 Data Domain is a DataDomainList 3[OVA]
762 1 DataDomainList contains Solid Dot 3[OVA]
763 1 SSME contains DDLV 5[OBR]

ObjectByReference

*Identifier *Index categoryCode
756 1 E127[DataDomain]
757 1 E128[DataDomainList]
758 1 E129[DataDomainListValue]
763 1 E613[SystemSystemMatrixElementDat

aDomainListValue]

ObjectByReferenceCharacterization

*OBRCIdentifier *OBRIdentifier *OBRIndex categoryCode valueText
799 758 1 E129.A01 YES (Solid dot in matrix)

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

Object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

760 1 901 1 756 1 997 E215-S-E127
761 1 756 1 757 1 997 E127-S-E128
762 1 757 1 758 1 999 E128-R-E129
763 1 758 1 21101 1 999 E129-R-E613

The relationTypeCode values used have the following meanings:

E215-S-E127 and E127-S-E128 are both “is a”
E128-R-E129 = contains
E129-R-E613 = is used to characterize

4-103

4.6.12.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to TechnicalInterfaceType through instances of
ObjectByReference corresponding to SoaServiceTechnicalInterfaceType. The applicable codes in
the ObjectVersionAssociation table are:

E682-R-E688 = [SoaService] has a [SoaServiceTechnicalInterfaceType]

E636-R-E688 = [TechnicalInterfaceType] applies to [SoaServiceTechnicalInterfaceType]

TechnicalInterfaceType, in turn, is linkable to TechnicalInterface through the
ObjectVersionAssociation table, code E643-R-E636 = [TechnicalInterfaceType] is the type for
[TechnicalInterface].

4.6.13 CADM v1.5 Support for Systems and Services Functionality Description (SV-
4a/b)

4.6.13.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-4 documents system functional hierarchies and

system functions, and the system data flows between them. Although there is a correlation
between OV-5 or business-process hierarchies and the system functional hierarchy of SV-4, it
need not be a one-to-one mapping, hence, the need for the Operational Activity to Systems
Function Traceability Matrix (SV-5), which provides that mapping.

4.6.13.2 High-Level Description
Figure 4-34 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-4

SV-4
ActivityModel consists of

ProcessActivity
as SystemFunction

InformationElement

flows from flows into

Role

Figure 4-34: High-Level Depiction of CADM v1.5 Data Structures for SV-4 Representation

4-104

The DoDAF architecture product SV-4 is expressed in CADM v1.5 as an instance of
Document. This allows the linkage to the pertinent Architecture in the manner that has been
described in preceding sections. The data content of a DoDAF architecture product SV-4 as a
Data Flow Diagram is expressed in CADM v1.5 as an instance of ActivityModel (a subtype of
InformationAsset) that is composed of system functions, represented as instances of
ProcessActivity. For each instance of ProcessActivity, there may be one or more instances of
InformationElement. The information flows are represented as instances of InformationElement,
and their roles as “inputs” or “outputs” are specified through
ActivityModelInformationElementRole.

Figure 5-19 in Volume II of DoDAF v1.5 depicts the template for SV-4 products as a Data
Flow Diagram. As shown Figure 5-19, there may be any number of system functions in an SV-4
built using this template. Each system function has a name, and there are flows starting at some
system function and ending at another. As mentioned above, the representation of this data
content in CADM v1.5 utilizes an instance of ActivityModel, as many instances of ProcessActivity
as there are system functions, and as many instances of InformationElement as there are flows in
the SV-4.

4.6.13.3 CADM v1.5 Instantiation
The SV-4 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.
Object

objectIdentifier pointerCode
305 E038[Architecture]
306 E148[Document]
307 E679[OBR]
611 E678[OVA]
612 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

305 1 Program Architecture X 4[ArchElem]
306 1 Notional Data Flow Diagram 4[ArchElem]
307 1 ArchitectureDocument (SV-4 in Program

Architecture[306]
5[OBR]

611 1 Architecture is documented by OV-5 3[OVA]
612 1 SV-4 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
307 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

611 1 305 1 307 1 999 E038-R-E045
612 1 306 1 307 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in

4-105

E148-R-E045 = records

The instance tables below show how CADM v1.5 captures the notional system function
System Function 1 from Figure 5-15 in DoDAF Volume II, and its associated flows (Flow 1 and
Flow 2).

Object
objectIdentifier pointerCode

116 E009[ActivityModel]
217 E486[ProcessActvity]
218 E486[ProcessActvity]
219 E486[ProcessActvity]
320 E221[InformationElement]
321 E221[InformationElement]
425 E010[ActivityModelInformationElementRole]
426 E010[ActivityModelInformationElementRole]
427 E010[ActivityModelInformationElementRole]
428 E010[ActivityModelInformationElementRole]
522 E678[OVA]
523 E678[OVA]
524 E678[OVA]
525 E678[OVA]
526 E678[OVA]
527 E678[OVA]
528 E678[OVA]
529 E678[OVA]
530 E678[OVA]
531 E678[OVA]
532 E678[OVA]
533 E678[OVA]
822 E022[ActivityModelProcessActivity]
823 E022[ActivityModelProcessActivity]
824 E022[ActivityModelProcessActivity]

4-106

ObjectVersion
*Identifier *Index name categoryCode

116 1 SV-4 Data Flow Diagram (Template) 4[ArchElem]
217 1 System Function 1 4[ArchElem]
218 1 System Function 2 4[ArchElem]
219 1 External Source 1 4[ArchElem]
320 1 Data Flow 1 4[ArchElem]
321 1 Data Flow 2 4[ArchElem]
425 1 AMIER01 for Data Flow 1 4[ArchElem]
426 1 AMIER02 for Data Flow 1 4[ArchElem]
427 1 AMIER03 for Data Flow 2 4[ArchElem]
428 1 AMIER04 for Data Flow 2 4[ArchElem]
522 1 System Function 1 connected through

AMPA01
3[OVA]

523 1 SV-4 connected through AMPA01 3[OVA]
524 1 System Function 2 connected through

AMPA02
3[OVA]

525 1 SV-4 connected through AMPA02 3[OVA]
526 1 External Source 1 connected through

AMPA03
3[OVA]

527 1 SV-4 connected through AMPA03 3[OVA]
528 1 AMPA[522] is part of AMIER01 3[OVA]
529 1 Data Flow 1 in AMIER01 starts at

External Source 1
3[OVA]

530 1 AMPA[523] is part of AMIER02 3[OVA]
531 1 Data Flow 1 in AMIER02 ends at

System Function 1
3[OVA]

532 1 AMPA[523] is part of AMIER03 3[OVA]
533 1 Data Flow 2 in AMIER03 starts at

System Function 1
3[OVA]

534 1 AMPA[524] is part of AMIER04 3[OVA]
535 1 Data Flow 2 in AMIER04 ends at

System Function 2
3[OVA]

822 1 AMPA01 (System Function 1 in
SV-4[116])

5[OBR]

823 1 AMPA02 (System Function 2 in
SV-4[116])

5[OBR]

824 1 AMPA03 (External Source 1 in
SV-4[116])

5[OBR]

Next, the actual linkages are built in the ObjectVersionAssociation table as shown below.

4-107

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 116 1 822 1 999 E009-R-E022
523 1 217 1 822 1 999 E486-R-E022
524 1 116 1 823 1 999 E009-R-E022
525 1 218 1 823 1 999 E486-R-E022
526 1 116 1 824 1 999 E009-R-E022
527 1 219 1 824 1 999 E486-R-E022
528 1 824 1 425 1 999 E022-R-E010
529 1 320 1 425 1 999 E221-R-E010
530 1 822 1 426 1 999 E022-R-E010
531 1 320 1 426 1 999 E221-R-E010
532 1 822 1 427 1 999 E022-R-E010
533 1 321 1 427 1 999 E221-R-E010
534 1 823 1 428 1 999 E022-R-E010
535 1 321 1 428 1 999 E221-R-E010

The relationTypeCode values used have the following meanings:

E009-R-E022 = includes
E486-R-E022 = is included
E022-R-E010 = defines
E221-R-E010 = is associated with

Lastly, in order to express the ‘role’ that each of the flows has with respect to the activity
where it starts and ends, one needs to instantiate the respective
ActivityModelInformationElementRole [AMIER]. For simplicity, only the attribute corresponding
to the typeCode is shown. The tables below show the entries in ArchitectureElement and
ActivityModelInformationElementRole.

ArchitectureElement
*Identifier *Index categoryCode

425 1 E010 [AMIER]
426 1 E010 [AMIER]
427 1 E010 [AMIER]
428 1 E010 [AMIER]

ActivityModelInformationElementRole

*Identifier *Index AMIER
categoryCode

425 1 2[output]
426 1 1[input]
427 1 2[output]
428 1 1[input]

Retrieving the information for this segment of the SV-4 shown in Figure 5-19 of DoDAF
Volume II could be accomplished by, for example, querying the database to find out all the
instances of InformationElement. Once this is accomplished, the ObjectVersionAssociation table
can be traversed to retrieve the related instances of ActivityModelInformationElementRole.
Through this process one can retrieve the associated system functions, since each instance of
ActivityModelInformationElementRole points to the instance of ObjectByReference that

4-108

corresponds to the ActivityModelProcessActivity [AMPA]. In the ObjectVersionAssociation table,
the AMPA entries point to the corresponding instances of ActivityModel and ProcessActivity.
Since filtering for just the ProcessActivity permits extraction of the name of the system functions
and from the ActivityModelInformationElementRole, one already has the ‘role’ for the data flow.

The table below shows the final result, for each one of the data flows, where there are two
‘roles’ showing whether it is an “output” (Role = 2) or an “input” (Role =2). As can be seen, the
resulting query matches the content of the SV-4 shown in Figure 5-19 in DoDAF Volume II for
the two flows, Data Flow 1 and Data Flow 2.

Data Flow 1 is depicted as being an output of system function External Source 1 and an
input for system function System Function 1. Similarly, Flow 2 is shown as being an output of
system function System Function 1 and an input for system function System Function 2.
Table 4-2: Example of a CADM v1.5 Query Showing System Functions, Flows, and Their Roles for a Notional

SV-4 as a Data Flow Diagram

Flow ID Flow Index Flow Name Role Function ID System Function Index System Function Name
320 1 Data Flow 1 2 219 1 External Source 1
320 1 Data Flow 1 1 217 1 System Function 1
321 1 Data Flow 2 2 217 1 System Function 1
321 1 Data Flow 2 1 218 1 System Funciton 2

4.6.13.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to SoaService via SoaServiceAssociation. The attribute
E684.A01 = typeCode in the ObjectVersionAssociationCharacterization for the instances of
SoaServiceAssociation can be set to “sends to and receives data from.” Next, one can link the
instances of the service associations to ActivityModelInformationElementRole for the flows that
have categoryCode = 1 (input) or categoryCode = 2 (output).

4.6.14 CADM v1.5 Support for Operational Activity to Systems Function Traceability
Matrix, Operational Activity to Systems Traceability Matrix, Operational
Activity to Services Traceability Matrix (SV-5a/b/c)

4.6.14.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-5 is a specification of the relationships between

the set of operational activities applicable to an architecture and the set of system functions
applicable to that architecture.

4.6.14.2 High-Level Description
Figure 4-35 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-5.

4-109

SV-5
consists ofSystem Function

Traceability Matrix

SysFunct 1

SysFunct 2

System Function Traceability
Matrix Element

Capability 1 Capability 2

Pr
oc

es
s

A
ct

iv
ity

 1

Pr
oc

es
s

A
ct

iv
ity

 2

Pr
oc

es
s

A
ct

iv
ity

 1

Pr
oc

es
s

A
ct

iv
ity

 2

Sy
st

em
 A

Task
as OperationalCapabilityTask

ProcessActivity
as SystemFunction

InformationAsset

Figure 4-35: High-Level Depiction of CADM v1.5 Data Structures for SV-5 Representation

The DoDAF architecture product SV-5 is expressed in CADM v1.5 as an instance of
Document. The SV-5 document can be connected to the appropriate instance of Architecture that
it is part of the CADM v1.03 entity ArchitectureDocument (modeled as ObjecByReference). As
shown in Figure 4-35, the SV-5 is a presentation format that highlights the relationship between
system functions and operational activities (both modeled in CADM v1.5 through
ProcessActivity). The data content of the SV-5 is built by instantiating the CADM v1.03 entity
SystemFunctionTraceabilityMatrixElement (through ObjecByReference) and linking it to
SystemProcessActivity (the association between systems and system functions) and the
operational activities modeled as instances of ProcessActivity.

The capabilities in the SV-5 product are understood as subtypes of Task, specifically, as
instances of OperationalCapabilityTask, which is defined as a Task that represents the potential
ability to carry out military functions that contribute to a MissionArea. Operational activities
modeled as instances of ProcessActivity are related to capabilities (as defined above) through the
CADM v1.03 entity ProcessActivityTask (modeled as ObjecByReference).

4.6.14.3 CADM v1.5 Instantiation
Figure 4-36 shows a notional template for the SV-5 product. For simplicity, only one system

with two system functions, and two operational capabilities with two operational activities each,
are shown.

4-110

SysFunct 1

SysFunct 2

Capability 1 Capability 2

Pr
oc

es
s

A
ct

iv
ity

 1

Pr
oc

es
s

A
ct

iv
ity

 2

Pr
oc

es
s

A
ct

iv
ity

 1

Pr
oc

es
s

A
ct

iv
ity

 2

Sy
st

em
 A

Figure 4-36: Notional SV-5 Template (Partial View)

The instantiation of SV-5 as Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
11147 E148[Document]

229 E679[OBR]
601 E678[OVA]
602 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
125 1 Project X Architecture 4[ArchElem]

11147 1 Example SV-5 4[ArchElem]
229 1 ArchitectureDocument (SV-5 in Project X

Architecture)
5[OBR]

601 1 Architecture is documented by SV-5 3[OVA]
602 1 SV-5 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
229 1 E045[ArchitectureDocument]

4-111

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

601 1 125 1 229 1 999 E038-R-E045
602 1 11147 1 229 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = [Architecture] is recorded in [ArchitectureDocument]
E148-R-E045 = [Document] records [ArchitectureDocument]

The instance tables for System A in the example are shown below.
Object

objectIdentifier pointerCode
7501 E563[System]

ObjectVersion

*Identifier *Index Name categoryCode
7501 1 System A 4[ArchElem]

Similarly, the following instance tables are used to express the operational capabilities shown in
the notional SV-5 template.

Object
objectIdentifier pointerCode

8111 E622[Task]
8112 E622[Task]

ObjectVersion

*Identifier *Index Name categoryCode
8111 1 Capability 1 4[ArchElem]
8112 1 Capability 2 4[ArchElem]

The system functions are captured in CADM v1.5 as instances of ProcessActivity. The
following instance table shows how this is done for this SV-5 example.

Object
objectIdentifier pointerCode

5001 E486[ProcessActivity]
5002 E486[ProcessActivity]
5003 E486[ProcessActivity]
5004 E486[ProcessActivity]
5101 E486[ProcessActivity]
5102 E486[ProcessActivity]

4-112

ObjectVersion
*Identifier *Index Name categoryCode

5001 1 PA 1 for C1 4[ArchElem]
5002 1 PA 2 for C1 4[ArchElem]
5003 1 PA 1 for C2 4[ArchElem]
5004 1 PA 2 for C2 4[ArchElem]
5101 1 System A-SF1 4[ArchElem]
5102 1 System A-SF2 4[ArchElem]

The next steps are essentially an exercise in the use of ObjectVersionAssociation to connect
each of the subcomponents to each other (i.e., System A to its functions, the operational
capabilities to their corresponding instances of ProcessActivity).

Since, in each case, the procedure is the same, only one such instance will be shown. First,
we need to link System A to System Function 1. The table below shows how this is done through
the use of the CADM v1.03 entity SystemProcessActivity.

Object
objectIdentifier pointerCode

5701 E678[OVA]
5702 E678[OVA]
5721 E679[OBR]

ObjectVersion

*Identifier *Index Name categoryCode
5701 1 Syst-to-SysProcAct 3[OVA]
5702 1 ProcAct-to-SysProcAct 3[OVA]
5721 1 SystProcAct01 5[OBR]

ObjectByReference

*Identifier *Index categoryCode
5721 1 E597[SystemProcessActivity]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

5701 1 7501 1 5721 1 999 E486-R-E597
5702 1 5101 1 5721 1 999 E563-R-E597

The relationTypeCode values used have the following meanings:

E563-R-E597 = [System] is designed to provide [SystemProcessActivity]
E486-R-E597 = [ProcessActivity (as SystemFunction)] is assigned to
[SystemProcessActivity]

The linkage of instances of Task (subtyped as OperationalCapabilityTask) to the
ProcessActivity instances follows the same pattern. The tables below show how this is done for
Capability 1 and Process Activity 1 in the notional example.

As before one creates the instances of Object and ObjectVersion required. The following
instance table shows how this is done for this SV-5 example.

4-113

Object
objectIdentifier pointerCode

5001 E486[ProcessActivity]
5002 E486[ProcessActivity]
5003 E486[ProcessActivity]
5004 E486[ProcessActivity]
8111 E622[Task]
8112 E622[Task]
8113 E622[Task]

ObjectVersion
*Identifier *Index Name categoryCode

5001 1 C1 PA1 4[ArchElem]
5002 1 C1 PA2 4[ArchElem]
5003 1 C2 PA1 4[ArchElem]
5004 1 C2 PA2 4[ArchElem]
8111 1 Operational Capability 1 4[ArchElem]
8112 1 Operational Capability 2 4[ArchElem]

The association between the instances of Task and their corresponding instances of
ProcessActivity through the CADM v1.03 entity ProcessActivityTask is shown below for the first
operational capability and its two operational activities from the example.

Object
objectIdentifier pointerCode

5801 E678[OVA]
5802 E678[OVA]
5803 E678[OVA]
5804 E678[OVA]
5821 E679[OBR]
5822 E679[OBR]

ObjectVersion

*Identifier *Index Name categoryCode
5801 1 ProcAct to ProcActTask 01 3[OVA]
5802 1 Task to ProcActTask 01 3[OVA]
5803 1 ProcAct to ProcActTask 02 3[OVA]
5804 1 Task to ProcActTask 02 3[OVA]
5821 1 ProcessActivityTask 01 5[OBR]
5822 1 ProcessActivityTask 02 5[OBR]

ObjectByReference

*Identifier *Index categoryCode
5821 1 E497[ProcessActivityTask]
5822 1 E497[ProcessActivityTask]

4-114

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

5801 1 5001 1 5821 1 999 E486-R-E497
5802 1 8111 1 5821 1 999 E622-R-E497
5803 1 5002 1 5822 1 999 E486-R-E497
5804 1 8111 1 5822 1 999 E622-R-E497

The relationTypeCode values used have the following meanings:

E486-R-E497 = [ProcessActivity] corresponds to [ProcessActivityTask]
E622-R-E497 = [Task] corresponds to [ProcessActivityTask]

Once the systems and systems functions are defined and associated, as well as the operational
capabilities and their related operational activities, one can instantiate the rows corresponding to
the CADM entity SystemFunctionTraceabilityMatrixElement. The tables below show how this is
done using the instances of ObjectVersionAssociation already built.

Object
objectIdentifier pointerCode

101 E679[OBR]
2101 E678[OVA]
2102 E678[OVA]

ObjectVersion
*Identifier *Index Name categoryCode

101 1 SFTME 01 5[OBR]
2101 1 SystProcAct 5721 to SFTME 01 4[OVA]
2102 1 ProcActTask 5821 to SFTME 01 4[OVA]
2103 1 ProcActTask 5822 to SFTME 01 4[OVA]

ObjectByReference
*Identifier *Index categoryCode

101 1 E582[SystemFunctionTraceabilityMatrixElement]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

2101 1 5721 1 101 1 999 E486-R-E497
2102 1 5821 1 101 1 999 E497-R-E582
2103 1 5822 1 101 1 999 E497-R-E582

The relationTypeCode values used have the following meanings:

E597-R-E582 = [SystemProcessActivity] may be cited for [SFTME]
E497-R-E582 = [ProcessActivityTask] is cited for [SFTME]

As noted in the section above, the SV-5 document is made up of all the instances of the
SystemFunctionTraceabilityMatrixElement. In CADM v1.5, the linkage is also done through the
ObjectVersionAssociation. The table below shows the entry for the example discussed (the
instantiation of the ObjectVersionAssociation is not shown).

4-115

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

4101 1 11147 1 101 1 999 E581-R-E582

The relationTypeCode values used have the following meanings:

E581-R-E582 = [SV-5] is defined by [SFTME]
In CADM v1.02/v1.03, an extension to link DataDomainListValue to the elements of the SV-

5 in a fashion similar to what is available for SV-3 was proposed. Because the change is not part
of the approved specification, it is not discussed here. However, its instantiation can be readily
accommodated through the use of ObjectVersionAssociation.

4.6.14.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to ProcessActivity through the characterization of
SoaServiceTraceabilityMatrixElement. To do that, one needs to create the respective instance of
SoaServiceTraceabilityMatrixElement through ObjectByReference and link it to SoaService in
the ObjectVersionAssociation table with the relationTypeCode = E682-R-E689 (may be cited for).
The corresponding instance of ProcessActivity can then be related to
SoaServiceTraceabilityMatrixElement in the ObjectVersionAssociation table with the
relationTypeCode = E486-R-E689 (is cited for).

4.6.15 CADM v1.5 Support for Systems and Services Data Exchange Matrix (SV-6)
4.6.15.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-6 specifies the characteristics of the system data

exchanged between systems. This product focuses on automated information exchanges (from
OV-3) that are implemented in systems. Non-automated information exchanges, such as verbal
orders, are captured in the OV products only.

4.6.15.2 High-Level Description
Figure 4-37 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-6.

4-116

SV-6

InformationExchangeRequirement

InformationRequirement

ExchangeNeedLineRequirement

ProcessActivityExchangeRequirement

logical needline

who what why how
info A
info B
info C
info D
info E

consists ofInfoExchange Matrix

InfoExchange Matrix Element

Te
ch

ni
ca

lIn
te

rf
ac

e

S
ys

te
m

A
ss

oc
ia

tio
n

Figure 4-37: High-Level Depiction of CADM v1.5 Data Structures for SV-6 Representation

The DoDAF architecture product SV-6 is expressed in CADM v1.5 as an instance of
Document. The SV-6 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference). As shown in Figure 4-37, the SV-6 is a presentation format that describes
data exchanges between systems. Portions of this information are captured already in the
characterization of the system interfaces depicted in the SV-1.

The actual data content of the SV-6 is built by linking it to instances of
InformationExchangeMatrixElement, which themselves can be linked to instances of
InformationElement, ExchangeNeedlineRequirement, and InformationExchangeRequirement. The
InformationExchangeMatrixElement collects the corresponding IER for the sending system and
the receiving system. The identification of system functions supported for each pair of systems
involved in the exchanged is accomplished through SystemProcessActivity. The specific
characteristics (e.g. accuracy, size, timeliness) of the exchange are specified through the
attribution of the IER (see SV-1 example above).

4.6.15.3 CADM v1.5 Instantiation
The SV-6 as an instance of Document and its relation to an appropriate instance of

Architecture is shown below.

4-117

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]

1127 E679[OBR]
601 E678[OVA]
602 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 SV-6 4[ArchElem]

1127 1 ArchitectureDocument (SV-6 in Program
Architecture[126]

5[OBR]

601 1 Architecture is documented by SV-6 3[OVA]
602 1 SV-6 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
1127 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

601 1 125 1 1127 1 999 E038-R-E045
602 1 126 1 1127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The instance of Document representing the SV-6 can now be linked to each of the required
instances of InformationExchangeMatrixElement (expressed through ObjectByReference).

Object
objectIdentifier pointerCode

701 679 [OBR]
702 679 [OBR]
703 679 [OBR]
704 679 [OBR]
671 678 [OVA]
672 678 [OVA]
673 678 [OVA]
674 678 [OVA]

4-118

ObjectVersion
*Identifier *Index name categoryCode

701 1 IER Matrix Element 1 5[OBR]
702 1 IER Matrix Element 2 5[OBR]
703 1 IER Matrix Element 3 5[OBR]
704 1 IER Matrix Element 4 5[OBR]
671 1 OV-3[125] contains IER ME 1 3[OVA]
672 1 OV-3[125] contains IER ME 2 3[OVA]
673 1 OV-3[125] contains IER ME 3 3[OVA]
674 1 OV-3[125] contains IER ME 4 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
701 1 E226[IER Matrix Element]
702 1 E226[IER Matrix Element]
703 1 E226[IER Matrix Element]
704 1 E226[IER Matrix Element]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

671 1 126 1 701 1 999 E225-R-E226
672 1 126 1 702 1 999 E225-R-E226
673 1 126 1 703 1 999 E225-R-E226
674 1 126 1 704 1 999 E225-R-E226

E225-R-E226 = contains
Finally, each InformationExchangeMatrixElement can be linked to the pertinent instance of

InformationExchangeRequirement. For the purpose of illustration, one can take the instance
already created for the SV-1 example discussed in the previous section. The only addition
required is the new instance of OVA. The Logical Needline can be associated to instance of
TechnicalInterface and instances of SystemAssociation, as discussed in the SV-1 section above.

Object
objectIdentifier pointerCode

309 E234[InformationExchangeRequirement]
901 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
309 1 IER for Interface 1 4[ArchElem]
901 1 IER[309]] to IER Matrix Element 1 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 307 1 701 1 999 E234-R-E226

The relationTypeCode values used have the following meanings:

E234-R-E226 = is referenced in

4-119

4.6.15.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to SoaService via SoaServiceAssociation. The attribute
E684.A01 = typeCode in the ObjectVersionAssociationCharacterization for the instances of
SoaServiceAssociation can be set to “sends to and receives data from.” Next, one can link the
instances of the service associations to ActivityModelInformationElementRole for the flows that
have categoryCode = 1 (input) or categoryCode = 2 (output).

4.6.16 CADM v1.5 Support for Systems and Services Performance Parameters Matrix
(SV-7)

4.6.16.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-7 specifies the quantitative characteristics of

systems and system hardware/software items, its interfaces (system data carried by the interface
as well as communications link details that implement the interface), and its functions. It
specifies the current performance parameters of each system, interface, or system function, and
the expected or required performance parameters at specified times in the future.

4.6.16.2 High-Level Description
Figure 4-38 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-7.

SV-7
consists ofSystem Performance

Parameter Matrix

SystemPerformanceParameterMatrixElement

Sys A Time0 Time 1 Time n

SoftwareType

EquipmentTypeCapability

System

specified

Time Period

Figure 4-38: High-Level Depiction of CADM v1.5 Data Structures for SV-7 Representation

The DoDAF architecture product SV-7 is expressed in CADM v1.5 as an instance of
Document. The SV-7 document can be connected to the appropriate instance of Architecture that

4-120

it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the SV-7 is built by linking it to instances of the CADM v1.03
entity SystemPerformanceParameterMatrixElement (instantiated through ObjectByReference).
Each of the elements can be related to the capability for a system (specified through
SystemCapability), the applicable time period, as well as any constraints that may apply.
Additional data related to the implementation time frame for the systems can be expressed
through SystemImplementationTimeFrame.

The relationship between System and specific instance of EquipmentType is done through the
CADM v1.03 SystemEquipmentType, instantiated through ObjectByReference. Similarly, the
linkage between System and Software is accomplished through the CADM v1.03
SystemSoftwareType, instantiated through ObjectByReference. The capabilities (e.g.
maintainability, response time) for each hardware element is specified through the CADM v1.03
entity MaterielTypeCapabilityNorm, instantiated through ObjectByReference.

4.6.16.3 CADM v1.5 Instantiation
Figure 4-39 shows a notional SV-7 for an intelligence system. Three periods are specified

indicating the current, mid-term, and long-term time frames.

SV-7 for Intelligence System AX-900 (Notional)

Performance Measure Current Value 2010 Value 2020 Value Units
Mean Time Between Failure 168 1000 3000 hours
Best Display Resolution 1024 by 1024 1600 by 1200 4096 by 8192 pixels
Diagonal Roam Rate 512 1024 4096 pixels/second

Figure 4-39: Notional SV-7 Template (Partial View)

The SV-7 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

1125 E038[Architecture]
1126 E148[Document]
1127 E679[OBR]
1601 E678[OVA]
1602 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
1125 1 Project Charlie-Bravo Architecture 4[ArchElem]
1126 1 SV-7 4[ArchElem]
1127 1 ArchitectureDocument (SV-7 in Program

Architecture[1126]
5[OBR]

1601 1 Architecture is documented by SV-7 3[OVA]
1602 1 SV-7 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
1127 1 E045[ArchitectureDocument]

4-121

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

1601 1 1125 1 1127 1 999 E038-R-E045
1602 1 1126 1 1127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The content of the SV-7 captured through instances of ObjectByReferece corresponding to the
CADM v1.03 entity SystemPerformanceParameterMatrixElement. The tables below show how
this is done in CADM v1.5.

Object
objectIdentifier pointerCode

9301 679[OBR]
9302 679[OBR]
9303 679[OBR]
9304 679[OBR]

ObjectVersion
*Identifier *Index name categoryCode

9301 1 SPPME 01 5[OBR]
9302 1 SPPME 01 5[OBR]
9303 1 SPPME 01 5[OBR]
9304 1 SPPME 01 5[OBR]

ObjectByReference

*Identifier *Index categoryCode
9301 1 E595 [SystemPerformanceParameterMatrixElement]
9302 1 E595 [SystemPerformanceParameterMatrixElement]
9303 1 E595 [SystemPerformanceParameterMatrixElement]
9304 1 E595 [SystemPerformanceParameterMatrixElement]

The relationship between the SV-7 and the instances of
SystemPerformanceParameterMatrixElement is done through ObjectByReference in the usual
manner. The table below shows the entries corrensponding to the records declared above (the
Object and ObjectVersion entries for the ObjectVersionAssociation are not shown).

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

7701 1 1126 1 9301 1 999 E594-R-E595
7702 1 1126 1 9302 1 999 E594-R-E595
7703 1 1126 1 9303 1 999 E594-R-E595
7704 1 1126 1 9304 1 999 E594-R-E595

The relationTypeCode values used have the following meanings:

E594-R-E595 = [SV-7] cites [SystemPerformanceParameterMatrixElement]

4-122

Each of the elements that makes up the SV-7 can be linked to instances of SystemCapability,
Period, as well as instances of SystemDirectedConstraint.

The first step is to relate systems to capabilities. As the notional example above shows, there
are four capabilities specified for the system in question. Each capability has three values
according to the period it is expected to be implemented. This means that one must create a total
of 12 entries for SystemCapability, so that each capability can be related to its corresponding
time frame. Since there are two entries for each SystemCapability (one for the capability and one
for the system), one needs a total of 24 associations.

The tables below show the entries for instances of Capability, System and their association
through SystemCapability. (Note: the instances of Object and ObjectVersion for the
ObjectVersionAssociation are not shown.)

Object
objectIdentifier pointerCode

3058 E082 [Capability]
3052 E082 [Capability]
3053 E082 [Capability]
3056 E082 [Capability]
4051 E563 [System]
5051 679 [OBR]
5052 679 [OBR]
5053 679 [OBR]
5054 679 [OBR]

ObjectVersion
*Identifier *Index name categoryCode

3058 1 Mean time between failure 4 [AE]
3052 1 Best horizontal display resolution 4 [AE]
3053 1 Best vertical display resolution 4 [AE]
3056 1 Diagonal roam rate 4 [AE]
4051 1 Intelligence System AX-900 4 [AE]
5051 1 SPPME A-01 5 [OBR]
5052 1 SPPME A-02 5 [OBR]
5053 1 SPPME A-03 5 [OBR]
5054 1 SPPME B-01 5 [OBR]
5055 1 SPPME B-02 5 [OBR]
5056 1 SPPME B-03 5 [OBR]
5057 1 SPPME C-03 5 [OBR]
5058 1 SPPME C-01 5 [OBR]
5059 1 SPPME C-02 5 [OBR]
5060 1 SPPME D-03 5 [OBR]
5061 1 SPPME D-01 5 [OBR]
5061 1 SPPME D-02 5 [OBR]

4-123

ObjectByReference

*Identifier *Index categoryCode
5051 1 E570 [SystemCapabililty]
5052 1 E570 [SystemCapabililty]
5053 1 E570 [SystemCapabililty]
5054 1 E570 [SystemCapabililty]
5055 1 E570 [SystemCapabililty]
5056 1 E570 [SystemCapabililty]
5057 1 E570 [SystemCapabililty]
5058 1 E570 [SystemCapabililty]
5059 1 E570 [SystemCapabililty]
5060 1 E570 [SystemCapabililty]
5061 1 E570 [SystemCapabililty]
5062 1 E570 [SystemCapabililty]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

6701 1 4051 1 5051 1 999 E563-R-E570
6702 1 3058 1 5051 1 999 E082-R-E570
6703 1 4051 1 5052 1 999 E563-R-E570
6704 1 3058 1 5052 1 999 E082-R-E570
6705 1 4051 1 5053 1 999 E563-R-E570
6706 1 3058 1 5053 1 999 E082-R-E570
6707 1 4051 1 5054 1 999 E563-R-E570
6708 1 3052 1 5054 1 999 E082-R-E570
6709 1 4051 1 5055 1 999 E563-R-E570
6710 1 3052 1 5055 1 999 E082-R-E570
6711 1 4051 1 5056 1 999 E563-R-E570
6712 1 3052 1 5056 1 999 E082-R-E570
6713 1 4051 1 5057 1 999 E563-R-E570
6714 1 3053 1 5057 1 999 E082-R-E570
6715 1 4051 1 5058 1 999 E563-R-E570
6716 1 3053 1 5058 1 999 E082-R-E570
6717 1 4051 1 5059 1 999 E563-R-E570
6718 1 3053 1 5059 1 999 E082-R-E570
6719 1 4051 1 5060 1 999 E563-R-E570
6720 1 3056 1 5060 1 999 E082-R-E570
6721 1 4051 1 5061 1 999 E563-R-E570
6722 1 3056 1 5061 1 999 E082-R-E570
6723 1 4051 1 5062 1 999 E563-R-E570
6724 1 3056 1 5062 1 999 E082-R-E570

The relationTypeCode values used have the following meanings:

E563-R-E570 = [System] performs to [SystemCapability]
E082-R-E570 = [Capability] is performed by [SystemCapability]

The next step is the creation of the required instances of Period. The tables below show how
this is done in CADM v1.5.

4-124

Object
objectIdentifier pointerCode

320021 E467 [Period]
320022 E467 [Period]
320023 E467 [Period]

ObjectVersion
*Identifier *Index name categoryCode

320021 1 Current 4 [AE]
320022 1 2010 4 [AE]
320023 1 2020 4 [AE]

Not shown here but available in CADM v1.5 is the specification for each System of the
applicable ImplementationTimeFrame.

The final step is to create the relationship of the SystemCapability instances and the Period
instances to the pertinent intances of SystemPerformancePamaterMatrixElement. This is
accomplished through ObjectVersionAssociation, as shown below. (Note: The instances of Object
and ObjectVersion for the ObjectVersionAssociation are not shown.) The SystemCapability
instances are linked to the corresponding instances of Period for the current, mid-term, and long-
term time frames. Because there are two relationships for each entry, there are a total of 24 rows
in the ObjectVersionAssociation table.

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

48701 1 4051 1 9301 1 999 E570-R-E595
48702 1 320021 1 9301 1 999 E467-R-E595
48703 1 4051 1 9301 1 999 E570-R-E595
48704 1 320022 1 9301 1 999 E467-R-E595
48705 1 4051 1 9301 1 999 E570-R-E595
48706 1 320023 1 9301 1 999 E467-R-E595
48707 1 4051 1 9302 1 999 E570-R-E595
48708 1 320021 1 9302 1 999 E467-R-E595
48709 1 4051 1 9302 1 999 E570-R-E595
48710 1 320022 1 9302 1 999 E467-R-E595
48711 1 4051 1 9302 1 999 E570-R-E595
48712 1 320023 1 9302 1 999 E467-R-E595
48713 1 4051 1 9303 1 999 E570-R-E595
48714 1 320021 1 9303 1 999 E467-R-E595
48715 1 4051 1 9303 1 999 E570-R-E595
48716 1 320022 1 9303 1 999 E467-R-E595
48717 1 4051 1 9303 1 999 E570-R-E595
48718 1 320023 1 9303 1 999 E467-R-E595
48719 1 4051 1 9304 1 999 E570-R-E595
48720 1 320021 1 9304 1 999 E467-R-E595
48721 1 4051 1 9304 1 999 E570-R-E595
48722 1 320022 1 9304 1 999 E467-R-E595
48723 1 4051 1 9304 1 999 E570-R-E595
48724 1 320023 1 9304 1 999 E467-R-E595

The relationTypeCode values used have the following meanings:

E570-R-E595 = [SystemCapability] applies to [SPPME]

4-125

E467-R-E595 = [Period] applies to [SPPME]

4.6.16.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to SoaServiceSpecificationTemplate. To do that, one needs
to set in the respective instance of SoaService and link it to SoaServiceSpecificationTemplate in
the ObjectVersionAssociation table with the relationship E682-R-E681 = has profile specified by.

4.6.17 CADM v1.5 Support for Systems and Services Evolution Description (SV-8)

4.6.17.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-8 captures evolution plans that describe how the

system, or the architecture in which the system is embedded, will evolve over a lengthy period of
time. Generally, the timeline milestones are critical for a successful understanding of the
evolution timeline.

4.6.17.2 High-Level Description
Figure 4-40 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-8.

SV-8
consists ofSystems Evolution

Description

Time Period

time line

Sys
tem

 A
Ver

sio
n 1

.0
Sys

tem
 A

Ver
sio

n 1
.1

Sys
tem

 A
Ver

sio
n 1

.2

FY06 FY07 FY08

associated toSystem

SystemAssociationMigration

System Migration Evolution

Figure 4-40: High-Level Depiction of CADM v1.5 Data Structures for SV-8 Representation

The DoDAF architecture product SV-8 is expressed in CADM v1.5 as an instance of
Document. The SV-8 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the SV-8 is built by linking it to instances of the CADM v1.03
entity SystemMigrationEvolution (instantiated through ObjectByReference). Each instance can be

4-126

linked to the pertinent pairs of systems that are specified through SystemAssociationMigration.
The latter can cite a specific Guidance (e.g., InformationTechnologyRequirement,
TechnicalCriterion), a specific Agreement (e.g., a standard or standard profile), and a time frame
Period. SystemAssociationMigration is linked to SystemAssociation. Through it, one can also
specify additional information, e.g., via SystemAssociationMeans.

4.6.17.3 CADM v1.5 Instantiation
Figure 41 below shows a notional SV-8 product for the target MIDB system. The migration

from the current baseline to the target system is shown as a series of version releases that
incorporate new capabilities for each component.

XIDB

IDB-II

Mainframe IDB

MIDB

DIA JMIIS

MIIPS

CONSTANT WEB

Collateral XIDB

PORTS
MARS (HATS)

CSIDS
SDB

STANS

FORT/FORTRIS

RAILS

MIDB C&P Capability

ACOM Amphibious DB
MILFAC
ACOM TMM
C&P Data Server
EOB-S

6/95 3/96 6/96 12/96 6/97 9/97

v
1.0 v

1.1
v
1.2

v
2.0

Figure 4-41: Systems Evolution Description Example

The SV-8 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

1136 E038[Architecture]
1137 E148[Document]
1138 E679[OBR]
1605 E678[OVA]
1606 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
1136 1 Project Charlie-Bravo Architecture 4[ArchElem]
1137 1 SV-8 4[ArchElem]
1138 1 ArchitectureDocument (SV-8 in Program

Architecture[1136]
5[OBR]

1605 1 Architecture is documented by SV-8 3[OVA]
1606 1 SV-8 documents Architecture 3[OVA]

4-127

ObjectByReference

*Identifier *Index categoryCode
1138 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

1605 1 1136 1 1138 1 999 E038-R-E045
1606 1 1137 1 1138 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The SV-8 is linked to the actual content of the product through the CADM v1.03 entity
SystemMigrationEvolution, which collects the entries from SystemAssociationMigration, a child
of SystemAssociation (instantiated as ObjectVersionAssociation). For each of the instances of
SystemAssociationMigration one can specify the applicable instance of Period in a manner
similar to the SV-8 product instantiation discussed in the preceding section.

From the table above, it follows that the representation of the data for an SV-8 in CADM v1.5
requires, as the first step, the specification of the systems involved. The entries corresponding to
the notional example shown in the figure above are given below.

4-128

Object
objectIdentifier pointerCode

93051 E563 [System]
93052 E563 [System]
93053 E563 [System]
93054 E563 [System]
94055 E563 [System]
95056 E563 [System]
95057 E563 [System]
95058 E563 [System]
95059 E563 [System]
95060 E563 [System]
95061 E563 [System]
95062 E563 [System]

ObjectVersion
*Identifier *Index name categoryCode

93051 1 MF-IDB 4 [AE]
93052 1 FORTIS 4 [AE]
93053 1 IDB-II 4 [AE]
93054 1 CSIDS 4 [AE]
94055 1 SDB 4 [AE]
95056 1 DIA JMIIS 4 [AE]
95057 1 MIIPS 4 [AE]
95058 1 MIDB 1.0 4 [AE]
95059 1 MIDB 1.1 4 [AE]
95060 1 MIDB 1.2 4 [AE]
95061 1 MIDB 2.0 4 [AE]
95062 1 MIDB 4 [AE]

In the example, there are 10 system associations. The entries in the ObjectVersionAssociation
table are shown below (the instances for the corresponding Object and ObjectVersion are not
shown).

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

125001 1 95062 1 93051 1 465 NULL
125002 1 95060 1 93052 1 465 NULL
125003 1 95059 1 93053 1 465 NULL
125004 1 95059 1 93054 1 465 NULL
125005 1 95058 1 94055 1 465 NULL
125006 1 95058 1 95056 1 465 NULL
125007 1 95058 1 95057 1 465 NULL
125008 1 95059 1 95058 1 465 NULL
125009 1 95060 1 95059 1 465 NULL
125010 1 95061 1 95060 1 465 NULL

The value categoryCode = 465 [SystemAssociation]

The CADM v1.03 entity SystemAssociationMigration is a child of SystemAssociation. In this
example, however, there is only one entry per instance of SystemAssociation. The
ObjectVersionAssociation entries below show how the instances are related. The corresponding

4-129

Object and ObjectVersion for SystemAssociationMigration are not shown but their instantation
follows the same pattern that has been shown before. The only thing to note is that, in this case,
the identifier for the subject instances in the ObjectVersionAssociation correspond to the ones for
SystemAssociation shown in the previous table, since, unlike the other cases shown before where
the CADM v1.03 entity mapped to ObjectByReference, the CADM v1.03 entity
SystemAssociation is represented directly by ObjectVersionAssociation in CADM v1.5.

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

225001 1 125001 1 493051 1 999 NULL
225002 1 125002 1 493052 1 999 NULL
225003 1 125003 1 493053 1 999 NULL
225004 1 125004 1 493054 1 999 NULL
225005 1 125005 1 494055 1 999 NULL
225006 1 125006 1 495056 1 999 NULL
225007 1 125007 1 495057 1 999 NULL
225008 1 125008 1 495058 1 999 NULL
225009 1 125009 1 495059 1 999 NULL
225010 1 125010 1 495060 1 999 NULL

E565-R-E569 = [SystemAssociation] is cited for [SystemAssociationMigration]

The applicable time frame is specified as an association from Period to SystemAssociation
Migration. The tables below show that instantiation.

Object
objectIdentifier pointerCode

171 E467 [Period]
172 E467 [Period]
173 E467 [Period]
174 E467 [Period]
175 E467 [Period]
176 E467 [Period]
177 E467 [Period]

ObjectVersion
*Identifier *Index name categoryCode

171 1 Phase 1 4 [AE]
172 1 Phase 1A 4 [AE]
173 1 Phase 1.1 4 [AE]
174 1 Phase 1.2 4 [AE]
175 1 Phase 1.2A 4 [AE]
176 1 Phase 2.0 4 [AE]
177 1 Beyond Phase 2.0 4 [AE]

The link between these Period entries and the SystemAssociationMigration is shown below.
The instances of Object and ObjectVersion for ObjectVersionAssociation are not shown.

4-130

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

725001 1 175 1 493051 1 999
725002 1 174 1 493052 1 999
725003 1 173 1 493053 1 999
725004 1 173 1 493054 1 999
725005 1 172 1 494055 1 999
725006 1 172 1 495056 1 999
725007 1 171 1 495057 1 999
725008 1 171 1 495058 1 999
725009 1 173 1 495059 1 999
725010 1 174 1 495060 1 999

E467-R-E569 = [Period] applies to [SystemAssociationMigration]
The connection between the SV-8 document and the records corresponding to

SystemAssociationMigration is done by creating instances corresponding to
SystemMigrationEvolution and relating the two parent entities, namely, the SV-8 document and
the instances of SystemAssociationMigration defined previously. Since the pattern is exactly the
same as what has been shown before, the only thing to note is that the codes to use in the
ObjectVersionAssociation table are:

E578-R-E588 = [SV-8] cites [SystemMigrationEvolution]
E569-R-E588 = [SystemAssociationMigration] is cited in [SystemMigrationEvolution]

4.6.17.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to SoaServiceAssociationMigration through the
characterization of SoaServiceAssociation. To do that, one needs to set in the respective instance
of SoaServiceAssociation and link it to SoaServiceAssociationMigration in the
ObjectVersionAssociation table with the relationTypeCode = E684-R-E690 (is cited for).

4.6.18 CADM v1.5 Support for Systems Technology Forecase (SV-9)

4.6.18.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-9 defines the underlying current and expected

supporting technologies. It is not expected to include predictions of technologies as with a crystal
ball. Expected supporting technologies are those that can be reasonably forecast given the current
state of technology and expected improvements. New technologies should be tied to specific
time periods, which can correlate against the time periods used in SV-8 milestones.

4.6.18.2 High-Level Description
Figure 4-42 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-9.

4-131

SV-9

consists ofSystem Technology
Forecast

System Technology Forecast Profile

TechnicalService

Technology Time Period

TechnologyForecast

Figure 4-42: High-Level Depiction of CADM v1.5 Data Structures for SV-9 Representation

The DoDAF architecture product SV-9 is expressed in CADM v1.5 as an instance of
Document. The SV-9 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the SV-9 is built by linking it to one or more instances of the
CADM v1.03 entity SystemTechnologyForecastProfile. The latter can be associated with a
specific System, a specific TechnicalService, a TechnologyCountermeasure, a
TechnologyForecast, and a Period. The Period is the same entity used to characterize a
TechnicalStandardForecastElement, TechnicalStandardForecast, and TechnologyForecast. The
specification of TechnologyForecast requires the appropriate data in the Technology table. The
CADM also provides additional structures related to Technology such as TechnologyAssociation,
TechnologyCountermeasure, TechnicalCriterion, TechnologyForecast, and TechnologyIssue.

4.6.18.3 CADM v1.5 Instantiation
Table 4-3 below shows a notional example for an SV-9 product, where a series of services

(as defined by DISR) are shown in terms of current and future availability. The estimated time
frames bound the forecast and provide input for implementation decisions.

4-132

 Table 4-3: Systems Technology Forecast (SV-9)—Notional Example

TECHNOLOGY FORECASTS
DISR Service SHORT TERM

(0-6 Months)
MID TERM

(6-12 Months)
LONG TERM

(12-18 Months)
Application Software

Support Applications MS Office 2007
available (for Windows
XP)

MS Office 2007 stable enough
for full-scale implementation

MS Office 2007 available for Apple
platfoms, E-mail on wireless PDAs
commonplace

Application Platform
Data Management Oracle 10g available

MySQL (Open Source
DBMS) available

— —

Operating System — Next MS Windows Vista
upgrade expected
Next Fedora Core 7 Linux major
release expected

Next MS Windows server upgrade
expected

Physical Environment — — Intel IA-64 becomes standard processor
for desktops
Low-cost availability of parallel
computing technologies for laptops

External Environment
User Interface — Thin screen CRT monitors for

PC desktops become price
competitive

Thin screen LED monitors become price
competitive for desktops
Conventional CRT technology monitors
for desktops become obsolete

Persistent Storage 5G PCMCIA type 2
card available

— Disk storage capacity doubles again

Communications networks — Wireless internet service
available for most
telecommuting staff

Broad-band fiber optic connections
available for most telecommuting staff

The SV-9 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

91136 E038[Architecture]
91137 E148[Document]
91138 E679[OBR]
91605 E678[OVA]
91606 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
91136 1 Project Charlie-Bravo Architecture 4[ArchElem]
91137 1 SV-9 4[ArchElem]
91138 1 ArchitectureDocument (SV-9 in Program

Architecture [91136]
5[OBR]

91605 1 Architecture is documented by SV-9 3[OVA]
91606 1 SV-9 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
91138 1 E045[ArchitectureDocument]

4-133

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

91605 1 91136 1 91138 1 999 E038-R-E045
91606 1 91137 1 91138 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The content of the SV-9 document is defined through instances of ObjectByReference
corresponding to the CADM v1.03 entity SystemTechnologyForecastProfile. The latter can be
linked to instances of ObjectByReference corresponding to the CADM v1.03 entities
TechnologyForecast, and TechnologyCountermeasure, as well as instances of Period
TechnicalInterface, and System.

To express the data of the notional SV-9 shown in the table above using CADM v1.5, one
needs to define first the instances of TechnicalService and TechnologyForecast. The instance
tables below show how this is done.

Object
objectIdentifier pointerCode

501 E644 [TechnicalService]
601 E644 [TechnicalService]
602 E644 [TechnicalService]
603 E644 [TechnicalService]
701 E644 [TechnicalService]
702 E644 [TechnicalService]
703 E644 [TechnicalService]

ObjectVersion

*Identifier *Index name categoryCode
501 1 Support Applications 4 [AE]
601 1 Data Management 4 [AE]
602 1 Operating System 4 [AE]
603 1 Physical Environment 4 [AE]
701 1 User Interface 4 [AE]
702 1 Persistent Storage 4 [AE]
703 1 Communications Networks 4 [AE]

Next the instances of Technology and TechnologyForecast can be created and their
relationships specified through ObjectVersionAssociation.

Object
objectIdentifier pointerCode

1011 E650 [Technology]
1012 E650 [Technology]
1013 E650 [Technology]
1014 E650 [Technology]
1015 E650 [Technology]
1016 E650 [Technology]
1017 E650 [Technology]
401 E679 OBR]

4-134

objectIdentifier pointerCode
402 E679 OBR]
403 E679 OBR]
404 E679 OBR]
405 E679 OBR]
406 E679 OBR]
407 E679 OBR]
408 E679 OBR]
409 E679 OBR]
410 E679 OBR]
411 E679 OBR]
412 E679 OBR]
413 E679 OBR]
414 E679 OBR]
415 E679 OBR]
416 E679 OBR]
417 E679 OBR]
418 E679 OBR]

ObjectVersion

*Identifier *Index name descriptionText categoryCode
1011 1 Software Applications Technology 4 [AE]
1012 1 Data Management Technology 4 [AE]
1013 1 Operating System Technology 4 [AE]
1014 1 Physical Environment Technology 4 [AE]
1015 1 User Interface Technology 4 [AE]
1016 1 Data Storage Technology 4 [AE]
1017 1 Communications Technology 4 [AE]
401 1 ─ MS Office 2000 available (for Windows

2000)
5 [OBR]

402 1 ─ MS Office 2000 stable enough for full-
scale implementation

5 [OBR]

403 1 ─ MS Office available for Linux 5 [OBR]
404 1 ─ E-mail on wireless PDAs commonplace 5 [OBR]
405 1 ─ Oracle 9i available 5 [OBR]
406 1 ─ MySQL (Open Source DBMS) available 5 [OBR]
407 1 ─ Next MS Windows desktop upgrade

expected
5 [OBR]

408 1 ─ Next Red Hat Linux major release
expected

5 [OBR]

409 1 ─ Next MS Windows server upgrade
expected

5 [OBR]

410 1 ─ Intel IA-64 becomes standard processor
for desktops

5 [OBR]

411 1 ─ Initial use of quantum computing
technologies

5 [OBR]

412 1 ─ Thin screen CRT monitors for PC
desktops become price competitive

5 [OBR]

413 1 ─ Thin screen LED monitors become price
competitive for desktops

5 [OBR]

414 1 ─ Conventional CRT technology monitors
for desktops become obsolete

5 [OBR]

415 1 ─ 5G PCMCIA type 2 card available 5 [OBR]
416 1 ─ Disk storage capacity doubles again 5 [OBR]
417 1 ─ Cable modem service available for most

telecommuting staff
5 [OBR]

4-135

*Identifier *Index name descriptionText categoryCode
418 1 ─ Fiber optic connections available for most

telecommuting staff
5 [OBR]

ObjectByReference

*Identifier *Index categoryCode
401 1 E654 [TechnologyForecast]
402 1 E654 [TechnologyForecast]
403 1 E654 [TechnologyForecast]
404 1 E654 [TechnologyForecast]
405 1 E654 [TechnologyForecast]
406 1 E654 [TechnologyForecast]
407 1 E654 [TechnologyForecast]
408 1 E654 [TechnologyForecast]
409 1 E654 [TechnologyForecast]
410 1 E654 [TechnologyForecast]
411 1 E654 [TechnologyForecast]
412 1 E654 [TechnologyForecast]
413 1 E654 [TechnologyForecast]
414 1 E654 [TechnologyForecast]
415 1 E654 [TechnologyForecast]
416 1 E654 [TechnologyForecast]
417 1 E654 [TechnologyForecast]
418 1 E654 [TechnologyForecast]

The applicable time frame for the TechnologyForecast instances is expressed in CADM v1.5
by creating the applicable entries in the Period table and linking them through
ObjectVersionAssociation as shown below.

Object
objectIdentifier pointerCode

271 E467 [Period]
272 E467 [Period]
275 E467 [Period]
276 E467 [Period]

ObjectVersion

*Identifier *Index name categoryCode
271 1 Current 4 [AE]
272 1 Short-Term 4 [AE]
275 1 Mid-Term 4 [AE]
276 1 Long-Term 4 [AE]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

877741 1 272 1 401 1 999 E467-R-E654
877742 1 275 1 402 1 999 E467-R-E654

4-136

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

877743 1 276 1 403 1 999 E467-R-E654
877744 1 276 1 404 1 999 E467-R-E654
877745 1 272 1 405 1 999 E467-R-E654
877746 1 272 1 406 1 999 E467-R-E654
877747 1 275 1 407 1 999 E467-R-E654
877748 1 275 1 408 1 999 E467-R-E654
877749 1 276 1 409 1 999 E467-R-E654
877750 1 276 1 410 1 999 E467-R-E654
877751 1 276 1 411 1 999 E467-R-E654
877752 1 275 1 412 1 999 E467-R-E654
877753 1 276 1 413 1 999 E467-R-E654
877754 1 276 1 414 1 999 E467-R-E654
877755 1 272 1 415 1 999 E467-R-E654
877756 1 276 1 416 1 999 E467-R-E654
877757 1 275 1 417 1 999 E467-R-E654
877758 1 276 1 418 1 999 E467-R-E654

E467-R-E654 = [Period] is the time frame for [TechnologyForecast]

The association of Technology to TechnologyForecast is done through
ObjectVersionAssociation. The tables below show the instantiation for the notional example
presented in this section. The Object and ObjectVersion tables are not included.

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

71601 1 1011 1 401 1 999 E650-R-E654

71602 1 1011 1 402 1 999 E650-R-E654

71603 1 1011 1 403 1 999 E650-R-E654

71604 1 1011 1 404 1 999 E650-R-E654

71605 1 1012 1 405 1 999 E650-R-E654

71606 1 1012 1 406 1 999 E650-R-E654

71607 1 1013 1 407 1 999 E650-R-E654

71608 1 1013 1 408 1 999 E650-R-E654

71609 1 1013 1 409 1 999 E650-R-E654

71610 1 1014 1 410 1 999 E650-R-E654

71611 1 1014 1 411 1 999 E650-R-E654

71612 1 1015 1 412 1 999 E650-R-E654

71613 1 1015 1 413 1 999 E650-R-E654

71614 1 1015 1 414 1 999 E650-R-E654

71615 1 1016 1 415 1 999 E650-R-E654

71616 1 1016 1 416 1 999 E650-R-E654

71617 1 1017 1 417 1 999 E650-R-E654

71618 1 1017 1 418 1 999 E650-R-E654

4-137

E650-R-E654 = [Technology] is expected to have [TechnologyForecast]

The last step is to link through SystemTechnologyForecastProfile both the SV-9 document
and the instances of TechnologyForecast. The Object and ObjectVersion for the
ObjectVersionAssociation table are not shown.

Object
objectIdentifier pointerCode

811641 E679 [OBR]
811642 E679 [OBR]
811643 E679 [OBR]
811644 E679 [OBR]
811645 E679 [OBR]
811646 E679 [OBR]
811647 E679 [OBR]
811648 E679 [OBR]
811649 E679 [OBR]
811650 E679 [OBR]
811651 E679 [OBR]
811652 E679 [OBR]
811653 E679 [OBR]
811654 E679 [OBR]
811655 E679 [OBR]
811656 E679 [OBR]
811657 E679 [OBR]
811658 E679 [OBR]

ObjectVersion

*Identifier *Index name categoryCode
811641 1 STFP[811641] 5 [OBR]
811642 1 STFP[811642] 5 [OBR]
811643 1 STFP[811643] 5 [OBR]
811644 1 STFP[811644] 5 [OBR]
811645 1 STFP[811645] 5 [OBR]
811646 1 STFP[811646] 5 [OBR]
811647 1 STFP[811647] 5 [OBR]
811648 1 STFP[811648] 5 [OBR]
811649 1 STFP[811649] 5 [OBR]
811650 1 STFP[811650] 5 [OBR]
811651 1 STFP[811651] 5 [OBR]
811652 1 STFP[811652] 5 [OBR]
811653 1 STFP[811653] 5 [OBR]
811654 1 STFP[811654] 5 [OBR]
811655 1 STFP[811655] 5 [OBR]
811656 1 STFP[811656] 5 [OBR]
811657 1 STFP[811657] 5 [OBR]
811658 1 STFP[811658] 5 [OBR]

4-138

ObjectByReference
*Identifier *Index categoryCode

811641 1 E617 [SystemTechnologyForecastProfile]
811642 1 E617 [SystemTechnologyForecastProfile]
811643 1 E617 [SystemTechnologyForecastProfile]
811644 1 E617 [SystemTechnologyForecastProfile]
811645 1 E617 [SystemTechnologyForecastProfile]
811646 1 E617 [SystemTechnologyForecastProfile]
811647 1 E617 [SystemTechnologyForecastProfile]
811648 1 E617 [SystemTechnologyForecastProfile]
811649 1 E617 [SystemTechnologyForecastProfile]
811650 1 E617 [SystemTechnologyForecastProfile]
811651 1 E617 [SystemTechnologyForecastProfile]
811652 1 E617 [SystemTechnologyForecastProfile]
811653 1 E617 [SystemTechnologyForecastProfile]
811654 1 E617 [SystemTechnologyForecastProfile]
811655 1 E617 [SystemTechnologyForecastProfile]
811656 1 E617 [SystemTechnologyForecastProfile]
811657 1 E617 [SystemTechnologyForecastProfile]
811658 1 E617 [SystemTechnologyForecastProfile]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

3811641 1 91137 1 811641 1 999 E616-R-E617
3811642 1 91137 1 811642 1 999 E616-R-E617
3811643 1 91137 1 811643 1 999 E616-R-E617
3811644 1 91137 1 811644 1 999 E616-R-E617
3811645 1 91137 1 811645 1 999 E616-R-E617
3811646 1 91137 1 811646 1 999 E616-R-E617
3811647 1 91137 1 811647 1 999 E616-R-E617
3811648 1 91137 1 811648 1 999 E616-R-E617
3811649 1 91137 1 811649 1 999 E616-R-E617
3811650 1 91137 1 811650 1 999 E616-R-E617
3811651 1 91137 1 811651 1 999 E616-R-E617
3811652 1 91137 1 811652 1 999 E616-R-E617
3811653 1 91137 1 811653 1 999 E616-R-E617
3811654 1 91137 1 811654 1 999 E616-R-E617
3811655 1 91137 1 811655 1 999 E616-R-E617
3811656 1 91137 1 811656 1 999 E616-R-E617
3811657 1 91137 1 811657 1 999 E616-R-E617
3811658 1 91137 1 811658 1 999 E616-R-E617
3811659 1 401 1 811641 1 999 E654-R-E617
3811660 1 402 1 811642 1 999 E654-R-E617
3811661 1 403 1 811643 1 999 E654-R-E617
3811662 1 404 1 811644 1 999 E654-R-E617
3811663 1 405 1 811645 1 999 E654-R-E617
3811664 1 406 1 811646 1 999 E654-R-E617
3811665 1 407 1 811647 1 999 E654-R-E617
3811666 1 408 1 811648 1 999 E654-R-E617

4-139

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

3811667 1 409 1 811649 1 999 E654-R-E617
3811668 1 410 1 811650 1 999 E654-R-E617
3811669 1 411 1 811651 1 999 E654-R-E617
3811670 1 412 1 811652 1 999 E654-R-E617
3811671 1 413 1 811653 1 999 E654-R-E617
3811672 1 414 1 811654 1 999 E654-R-E617
3811673 1 415 1 811655 1 999 E654-R-E617
3811674 1 416 1 811656 1 999 E654-R-E617
3811675 1 417 1 811657 1 999 E654-R-E617
3811676 1 418 1 811658 1 999 E654-R-E617

E616-R-E617 = [SV-9] is defined by [SystemTechnologyForecastProfile]
E654-R-E617 = [TechnologyForecast] defines [SystemTechnologyForecastProfile]

4.6.18.4 Net-Centric Requirements
Since the purpose of the SV-9 is to provide a summary of emerging technologies that impact

the architecture and its existing planned systems, it would subsequently include any required
services or other technologies that support NCO. Accordingly, the CADM support for the SV-9
is well suited to support the NCE.

4.6.19 CADM v1.5 Support for Systems and Services Rules Model, Systems and Services
State Transition Description, and Systems Event-Trace Description (SV-10a/b/c)

4.6.19.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-10 products describe dynamic behaviors

concerning the timing and sequencing of events that capture system performance characteristics
of an executing system (i.e., a system performing the system functions described in SV-4).
Behavior modeling and documentation is key to a successful architecture description, because it
is how the architecture behaves that is crucial in many situations. Although knowledge of the
functions and interfaces is also crucial, knowing whether, for example, a response should be
expected after sending message X to node Y can be crucial to successful overall operations.

4.6.19.2 CADM v1.5 Support for Systems Rules Model (SV-10a)
4.6.19.2.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-10a describes the constraints on an architecture,

on a system(s), or system hardware/software item(s), and/or on a system function(s). While other
SV products (e.g., SV-1, SV-2, SV-4, SV-11) describe the static structure of the Systems View
(i.e., what the systems can do), they do not describe, for the most part, what the systems must do,
or what it cannot do.

4.6.19.2.2 High-Level Description
Figure 4-43 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-10a.

4-140

SV-10a
Rule Model consists of

associated toOperationalRule

RuleModelOperationalRule

sequence

Figure 4-43: High-Level Depiction of CADM v1.5 Data Structures for SV-10a Representation

The DoDAF architecture product SV-10a is expressed in CADM v1.5 as an instance of
Document. The SV-10a can be linked to the appropriate instance of Architecture through the
associative entity ArchitectureDocument (instantiated through ObjectByReference). The actual
data content of the SV-10a is built linking it to instances of the associative entity
RuleModelOperationalRule from CADM v1.03 (instantiated through ObjectByReference), which
collects the instances of OperationalRule (a subtype of Guidance) that make up the rule model
itself.

4.6.19.2.3 CADM v1.5 Instantiation

The following instance tables show how the SV-10a product is represented in CADM v1.5. The
example follows Figure 4-44.

 If field A in FORM-X is set to value T,
 Then field B in FORM-Y must be set to value T
 And field C in FORM-Z must be set to value T
 End If

Figure 4-44: Notional Example of an SV-10a Product

The instantiation of SV-10a as Document and its relation to an appropriate instance of
Architecture is shown below.

4-141

Object
objectIdentifier pointerCode

275 E038[Architecture]
276 E148[Document]
277 E679[OBR]
111 E678[OVA]
112 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

275 1 Program Architecture C02 4[ArchElem]
276 1 Notional Systems Rule Model 4[ArchElem]
277 1 ArchitectureDocument (SV-10a in

Program Architecture C02)
5[OBR]

111 1 Architecture is documented by SV-10a 3[OVA]
112 1 SV-10a documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
277 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

111 1 275 1 277 1 999 E038-R-E045
112 1 276 1 277 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The instance of Document representing the SV-10a can be linked to each of the required
instances of RuleModelOperationalRule (expressed through ObjectByReference) which will
collect the instances of OperationalRule that make the content of the rule model. Note that
RuleModelOperationalRule relates an instance of Document corresponding to an SV-10a to
multiple instances of OperationalRule.

Object
objectIdentifier pointerCode

371 E679[OBR]
381 E426[Op Rule]
291 E678 [OVA]
292 E678 [OVA]

ObjectVersion
*Identifier *Index name categoryCode

371 1 RuleModelOperationalRule E1-1 5[OBR]
381 1 System Rule 1 4 [ArchElem]
291 1 SV-10a cites Op Rule 1 3 [OVA]
292 1 System Rule 1 is cited for SV-10a 3 [OVA]

4-142

ObjectByReference

*Identifier *Index categoryCode
371 1 E521[RuleModelOperationalRule]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

291 1 276 1 371 1 999 E520-R-E521
292 1 381 1 371 1 999 E426-R-E521

The relationTypeCode values used have the following meanings:

E520-R-E521 = cites
E426-R-E521 = is cited for

The actual rule is stored in the appropriate attributes of each of the instances of Guidance and
OperationalRule. The textual description of the operational rule is recorded in the text of
Guidance. A further characterization of the rule can be stated through the attribution of
OperationalRule. The instance tables below show how this is done for the notional example
discussed at the beginning of this section.

ArchitectureElement
*Identifier *Index categoryCode

307 1 27 = GUIDANCE

Guidance
*Identifier *Index categoryCode subject

Text
text

307 1 13 = OPERATIONAL RULE Rule 1 for Rule Model A IF field A in FORM-X is set to value T,
THEN field B in FORM-Y must be set to value
T
AND field C in FORM-Z must be set to value T
End If

OperationalRule

*Identifier *Index categoryCode formalLanguage
Name

307 5 6 = CRITERION Action Assertion Rule

4.6.19.2.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to OperationRule through the instances of
ObjectByReference corresponding to RuleModelOperationalRule
RuleModelOperationalRuleSoaService. To do that, one needs to create the respective instance of
RuleModelOperationalRuleSoaService and link it to SoaService in the ObjectVersionAssociation
table with the relationTypeCode = E682-R-E691 (is governed by) and link it to
RuleModelOperationalRule in the ObjectVersionAssociation table with the relationTypeCode =
E691-R-E527 (applies to) and set in the respetive instance of RuleModelOperationalRule and link
it to OperationalRule in the ObjectVersionAssociation table with the relationTypeCode = E691-R-
E521 (is cited for).

4-143

4.6.19.3 CADM v1.5 Support for Systems State Transition Description (SV-10b)
4.6.19.3.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-10b is a graphical method of describing a

system (or system function) response to various events by changing its state. The diagram
basically represents the sets of events to which the systems in the architecture will respond (by
taking an action to move to a new state) as a function of its current state. Each transition
specifies an event and an action.

4.6.19.3.2 High-Level Description
Figure 4-45 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-10b.

SV-10b

State Transition Diagram consists of

StateTransition

ProcessStateVertex

source target

Role

Event triggers Actionproduces

Figure 4-45: High-Level Depiction of CADM v1.5 Data Structures for SV-10b Representation

4.6.19.3.3 CADM v1.5 Instantiation

The following instance tables show how the SV-10b product is represented in CADM v1.5. The
example follows Figure 4-46.

Figure 4-46: Notional Example of an SV-10b Product

The instantiation of SV-10b for this example as Document and its relation to an appropriate

instance of Architecture is shown below.

4-144

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E679[OBR]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index Name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 Notional SV-10b 4[ArchElem]
127 1 ArchitectureDocument (SV-10b in

Project X Architecture)
5[OBR]

522 1 Architecture is documented by SV-10b 3[OVA]
523 1 SV-10b documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

For an SV-10b, the following convention is used: Instances of ProcessStateVertex are created
for oval elements of the SV-10b diagram and the initial and final states (which are treated as
pseudo states).

The instantiation of these states is shown below:
Object

objectIdentifier pointerCode
307 E502[ProcessStateVertex]
308 E502[ProcessStateVertex]
309 E502[ProcessStateVertex]
310 E502[ProcessStateVertex]

4-145

ObjectVersion
*Identifier *Index name categoryCode

307 1 Initial state 4[ArchElem]
308 1 State 1 4[ArchElem]
309 1 State 2 4[ArchElem]
310 1 End State 4[ArchElem]

The actions associated with the pseudo states are those that represent the entry and exit for
the state transition diagram. The tables below show their instantiation and how they are
linked to the pseudo states.

Object
objectIdentifier pointerCode

611 E001[Action]
612 E001[Action]
614 E679[OBR]
615 E679[OBR]
616 E678[OVA]
617 E678[OVA]
618 E678[OVA]
619 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

611 1 Action A001 4[ArchElem]
612 1 Action A002 4[ArchElem]
614 1 ProcessStateAction PSA001 5[OBR]
615 1 ProcessStateAction PSA002 5[OBR]
616 1 Action A001 to Initial state 3[OVA]
617 1 Initial state to Action A001 3[OVA]
618 1 Action A002 to End state 3[OVA]
619 1 End state to Action A002 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
614 1 E501[ProcessStateAction]
615 1 E501[ProcessStateAction]

ObjectByReferenceCharacterization
*Identifier OBR

Identifier
OBR
Index

categoryCode valueText

101 614 1 E501.A01 1
102 614 1 E501.A02 1 (entry)
103 615 1 E501.A01 1
104 615 1 E501.A02 2 (exit)

The categoryCode values used have the following meanings:

4-146

E501.A01 = SequenceIdentifierText
E501.A02 = RoleCode
ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

616 1 611 1 614 1 999 E001-R-E501
617 1 307 1 614 1 999 E500-R-E501
618 1 612 1 615 1 999 E001-R-E501
619 1 310 1 615 1 999 E500-R-E501

The relationTypeCode values used have the following meanings:

E001-R-E501 = represents
E500-R-E501 = represents

As indicated above, the content of the SV-10b is expressed through the instantiation of
TranstionProcess. For each instance of TranstionProcess, one can indicate its source and target
states (represented in CADM as instances of ProcessStateVertex), the event that triggers the
transition, as well as the system rule that may act as the guard condition for the transition. In
CADM v1.5, these links are all represented through entries in the ObjectVersionAssociation
table. The attribute labelName in TranstionProcess is used to capture the text that is attached to
each of the arrows in the state transition diagram. The instance tables below describe how this is
done for the example shown in Figure 4-46 above.

Object
objectIdentifier pointerCode

701 E663[TransitionProcess]
702 E663[TransitionProcess]
703 E663[TransitionProcess]

ObjectVersion

*Identifier *Index name categoryCode
701 1 TRN001 4[ArchElem]
702 1 TRN002 4[ArchElem]
703 1 TRN003 4[ArchElem]

ArchitectureElement
*Identifier *Index categoryCode

701 1 72 = TRANSITION-PROCESS
702 1 72 = TRANSITION-PROCESS
703 1 72 = TRANSITION-PROCESS

TransitionProcess
*Identifier *Index labelName

701 1 —
702 1 Event/Action
703 1 —

4-147

The intances of ObjectVersionAssociation required to specify the source and target state for
each transition are shown below.

Object
objectIdentifier pointerCode

901 E678[OVA]
902 E678[OVA]
903 E678[OVA]
904 E678[OVA]
905 E678[OVA]
906 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

901 1 PSV[307] -- PSV[308] {source} E678[OVA]
902 1 PSV[307] -- PSV[308] {target} E678[OVA]
903 1 PSV[308] -- PSV[309] {source} E678[OVA]
904 1 PSV[308] -- PSV[309] {target} E678[OVA]
905 1 PSV[309] -- PSV[310] {source} E678[OVA]
906 1 PSV[309] -- PSV[310] {target} E678[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 307 1 701 1 999 E502-R2-E663
902 1 308 1 701 1 999 E502-R1-E663
903 1 308 1 702 1 999 E502-R2-E663
904 1 309 1 702 1 999 E502-R1-E663
905 1 309 1 703 1 999 E502-R2-E663
906 1 310 1 703 1 999 E502-R1-E663

The relationTypeCode values used have the following meanings:

E502-R2-E663 = is source for
E502-R1-E663 = is target for

The same approach would be used to link the corresponding trigger events to each of the
instances of TransitionProcess.

The link between the SV-10b Document and each of the instances of TransitionProcess is
done in a similar fashion through ObjectVersionAssociation with the owning Document instance
linked to each of the component instances of TransitionProcess.

4.6.19.3.4 Net-Centric Requirements
Since the purpose of the SV-10b is to provide a graphical method of describing a system (or

system function) response to various events by changing its state, it would subsequently include
any services that support NCO Accordingly, the CADM support for the SV-10b is well suited to
support the NCE.

4.6.19.4 CADM v1.5 Support for Systems Event-Trace Description (SV-10c)
4.6.19.4.1 Product Definition

4-148

As stated in DoDAF v1.5 Volume II, the SV-10c provides a time-ordered examination of the
system data elements exchanged between participating systems (external and internal), system
functions, or human roles as a result of a particular scenario. Each event-trace diagram should
have an accompanying description that defines the particular scenario or situation. SV-10c in the
Systems View may reflect system-specific aspects or refinements of critical sequences of events
described in the OV.

4.6.19.4.2 High-Level Description
Figure 4-47 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-10c.

SV-10c

consists of

Event

originates at terminates at

Role

Node

Event Trace Description

EventNodeCrossLink

OperationalScenario

Figure 4-47: High-Level Depiction of CADM v1.5 Data Structures for SV-10c Representation

4.6.19.4.3 CADM v1.5 Instantiation

The following instance tables show how the SV-10c product is represented in CADM v1.5. The
example follows Figure 4-48.

4-149

Time Scale
(Duration)

Node A
(Forward
Observer)

Node B
(Combat

Management)

Node C
(Battle

Management)

Node D
(Weapon
System)

Call for Fire

For Mission

Fire Mission and
Mission Assignment

Message to Observer

Fire Adjustment

Message to Observer

Damage Assessment

End of Mission Notification

Fire for Effect

T1

T2

T3

T4

T5

T6

T7

T8

T9
Figure 4-48: Notional Example of an SV-10c Product

The instantiation of SV-10c as Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E045[ArchitectureDocument]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 SV-10c 4[ArchElem]
127 1 ArchitectureDocument (SV-10c in

Project X Architecture)
3[OVA]

522 1 Architecture is documented by SV-10c 3[OVA]
523 1 SV-10c documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

4-150

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

Object
objectIdentifier pointerCode

306 E427[OperationalScenario]
307 E159[EventNodeCrosslink]
308 E159[EventNodeCrosslink]
309 E159[EventNodeCrosslink]
310 E159[EventNodeCrosslink]
311 E159[EventNodeCrosslink]
312 E159[EventNodeCrosslink]
313 E159[EventNodeCrosslink]
314 E159[EventNodeCrosslink]
315 E159[EventNodeCrosslink]
316 E359[Node]
317 E359[Node]
318 E359[Node]
319 E359[Node]
320 E156[Event]
321 E156[Event]
322 E156[Event]
323 E156[Event]
324 E156[Event]
325 E156[Event]
326 E156[Event]
327 E156[Event]
328 E156[Event]
564 E678[OVA]
565 E678[OVA]
566 E678[OVA]
567 E678[OVA]
568 E678[OVA]
569 E678[OVA]
570 E678[OVA]
571 E678[OVA]
572 E678[OVA]
573 E678[OVA]
574 E678[OVA]
575 E678[OVA]

576 E678[OVA]
577 E678[OVA]
578 E678[OVA]
579 E678[OVA]
580 E678[OVA]

4-151

objectIdentifier pointerCode
581 E678[OVA]
582 E678[OVA]
583 E678[OVA]
584 E678[OVA]
585 E678[OVA]
586 E678[OVA]
587 E678[OVA]
588 E678[OVA]
589 E678[OVA]
590 E678[OVA]
591 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
306 1 OV-6c Scenario 4[ArchElem]
307 1 ENCL1 [Event 1 from Node A to

Node B]
5[OBR]

308 1 ENCL2 [Event 2 from Node B to
Node C]

5[OBR]

309 1 ENCL3[Event 3 from Node C to
Node D]

5[OBR]

310 1 ENCL4[Event 4 from Node D to
Node A]

5[OBR]

311 1 ENCL5[Event 5 from Node A to Node
D]

5[OBR]

312 1 ENCL6[Event 6 from Node D to
Node A]

5[OBR]

313 1 ENCL7[Event 7 from Node A to Node
D]

5[OBR]

314 1 ENCL8[Event 8 from Node A to Node
B]

5[OBR]

315 1 ENCL9[Event 9 from Node D to
Node A]

5[OBR]

316 1 Node A 4[ArchElem]
317 1 Node B 4[ArchElem]
318 1 Node C 4[ArchElem]
319 1 Node D 4[ArchElem]
320 1 Call for fire 4[ArchElem]
321 1 For mission 4[ArchElem]
322 1 Fire mission and mission assignment 4[ArchElem]
323 1 Message to observer 4[ArchElem]
324 1 Fire adjustment 4[ArchElem]
325 1 Message to observer 4[ArchElem]
326 1 Fire for effect 4[ArchElem]
327 1 Damage Assessment 4[ArchElem]
328 1 End of mission notification 4[ArchElem]
564 1 OV-6c Scenario describes Document 3[OVA]
565 1 Event 1[320] is part of ENCL1[307] 3[OVA]
566 1 ENCL1 from Node A[316] 3[OVA]
567 1 ENCL1 to Node B[317] 3[OVA]
568 1 Event 2[321] is part of ENCL2[308] 3[OVA]
569 1 ENCL2 from Node B[317] 3[OVA]
570 1 ENCL2 to Node C[318] 3[OVA]
571 1 Event 3[320] is part of ENCL3[309] 3[OVA]

4-152

*Identifier *Index name categoryCode
572 1 ENCL3 from NodeC[318] 3[OVA]
573 1 ENCL3 to NodeD[319] 3[OVA]
574 1 Event 4[321] is part of ENCL4[310] 3[OVA]
575 1 ENCL4 from NodeD[319] 3[OVA]
576 1 ENCL4 to NodeA[316] 3[OVA]
577 1 Event 5[322] is part of ENCL5[311] 3[OVA]
578 1 ENCL5 from NodeA[316] 3[OVA]
579 1 ENCL5 to NodeD[319] 3[OVA]
580 1 Event 6[323] is part of ENCL 6[312] 3[OVA]
581 1 ENCL6 from Node D[319] 3[OVA]
582 1 ENCL6 to Node A[316] 3[OVA]
583 1 Event 7[324] is part of ENCL7[313] 3[OVA]
584 1 ENCL7 from NodeA[316] 3[OVA]
585 1 ENCL7 to NodeD[319] 3[OVA]
586 1 Event8[325] is part of ENCL8[314] 3[OVA]
587 1 ENCL8 from NodeA[316] 3[OVA]
588 1 ENCL8 to NodeB[317] 3[OVA]
589 1 Event 9[326] is part of ENCL9[315] 3[OVA]
590 1 ENCL9 from NodeD[319] 3[OVA]
591 1 ENCL9 to Nodea[316] 3[OVA]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

564 1 306 1 126 1 999 E148-R-E427
565 1 307 1 320 1 999 E156-R-E159
566 1 307 1 316 1 999 E359-R-E159
567 1 307 1 317 1 999 E359-R-E159
568 1 308 1 321 1 999 E156-R-E159
569 1 308 1 317 1 999 E359-R-E159
570 1 308 1 318 1 999 E359-R-E159
571 1 309 1 322 1 999 E156-R-E159
572 1 309 1 318 1 999 E359-R-E159
573 1 309 1 319 1 999 E359-R-E159
574 1 310 1 323 1 999 E156-R-E159
575 1 310 1 319 1 999 E359-R-E159
576 1 310 1 316 1 999 E359-R-E159
577 1 311 1 324 1 999 E156-R-E159
578 1 311 1 316 1 999 E359-R-E159
579 1 311 1 319 1 999 E359-R-E159
580 1 312 1 325 1 999 E156-R-E159
581 1 312 1 319 1 999 E359-R-E159
582 1 312 1 316 1 999 E359-R-E159
583 1 313 1 326 1 999 E156-R-E159
584 1 313 1 316 1 999 E359-R-E159
585 1 313 1 319 1 999 E359-R-E159
586 1 314 1 327 1 999 E156-R-E159
587 1 314 1 316 1 999 E359-R-E159
588 1 314 1 317 1 999 E359-R-E159
589 1 315 1 328 1 999 E156-R-E159
590 1 315 1 319 1 999 E359-R-E159

4-153

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

597 1 315 1 316 1 999 E359-R-E159

The relationTypeCode values used have the following meanings:

E148-R-E427 = describes
 E156-R-E159 = is crosslink for
 E359-R-E159 = is the originator for
 E359-R-E159 = is the terminator for

4.6.19.4.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to Node through the characterization of NodeSoaService.
To do that, one needs to set in the respective instance of NodeSoaService and link it to
SoaService in the ObjectVersionAssociation table with the relationTypeCode = E682-R-E685
(supports the functions of) and link it to Node in the ObjectVersionAssociation table with the
relationTypeCode = E359-R-E685 (is supported by).

4.6.20 CADM v1.5 Support for Physical Schema (SV-11)

4.6.20.1 Product Definition
As stated in DoDAF v1.5 Volume II, the SV-11 is one of the architecture products closest to

the actual system design in the Framework. The product defines the structure of the various kinds
of system data that are utilized by the systems in the architecture.

4.6.20.2 High-Level Description
Figure 4-49 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of an SV-11.

4-154

consists ofPhysical Model
Specification

In
te

rn
al

D
at

aM
od

el

DataEntity

DataAttribute

described bydisplayed in

DataDomain

DataDomainRange

DataDomainList QuantitativeDataDomain

QualitativeDataDomain

SV-11

Figure 4-49: High-Level Depiction of CADM v1.5 Data Structures for SV-11 Representation

The DoDAF architecture product SV-11 is expressed in CADM v1.5 as an instance of
Document. The SV-11 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the SV-11 is built by linking it to one or more instances of
UserPresentationView. This allows the specification of a physical structure, which may differ
somewhat from the logical data model (e.g., where denormalization or materialized views are
created for implementation). Where the physical and logical models remain tightly coupled (i.e.,
there is a one-to-one correspondence between the logical entities and attributes and the
corresponding tables and columns) the physical model can be built essentially in the same way as
the OV-7. The constraints on data types and valid domain ranges are expressed though the
CADM v1.03 entity DataDomain and its sutypes. The abbreviatedName for each
InformationAsset can be used to capture the table and column names respectively.

4.6.20.3 CADM v1.5 Instantiation
The following instance tables show how the SV-11 product is represented in CADM v1.5. The
example follows Figure 4-50.

4-155

Entity 2 Name
Attribute 1 Name
Attribute 2 Name
...

Entity 3 Name
Attribute 1 Name
Attribute 2 Name
...

Entity 1 Name
Attribute 1 Name
Attribute 2 Name
...

Relationship Name

Entity 4 Name
Attribute 1 Name
Attribute 2 Name
...

Figure 4-50 Notional Example of an SV-10c Product

The instantiation of SV-11 as Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E045[ArchitectureDocument]
522 E678[OVA]
523 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
125 1 Project X Architecture 4[ArchElem]
126 1 SV-11 4[ArchElem]
127 1 ArchitectureDocument (SV-11 in Project

X Architecture)
3[OVA]

522 1 Architecture is documented by SV-11 3[OVA]
523 1 SV-11 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation

*Identifier *Index subject
OV

Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

522 1 125 1 127 1 999 E038-R-E045
523 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

4-156

The next step is to relate the SV-11 to the instances of InformationAsset that corresponds to
the actual content of the model. The pertinent subtypes are DataEntity, DataAttribute and
ConceptualDataModel.

The instance tables below show how this is expressed in CADM v1.5.
Object

objectIdentifier pointerCode
214 E112[ConceptualModel]
215 E215[ConceptualDataModelView]
216 E114[IConceptualDataModelViewDataEntity]
217 E114[IConceptualDataModelViewDataEntity]
218 E114[IConceptualDataModelViewDataEntity]
219 E114[IConceptualDataModelViewDataEntity]
220 E136[DataEntityRelationship]
221 E136[DataEntityRelationship]
222 E136[DataEntityRelationship]
223 E136[DataEntityRelationship]
315 E133[DataEntity]
316 E133[DataEntity]
317 E133[DataEntity]
318 E133[DataEntity]
321 E118[DataAttribute]
322 E118[DataAttribute]
323 E118[DataAttribute]
324 E118[DataAttribute]
325 E118[DataAttribute]
326 E118[DataAttribute]
327 E118[DataAttribute]
328 E118[DataAttribute]
622 E678[OVA]
623 E678[OVA]
624 E678[OVA]
625 E678[OVA]
626 E678[OVA]
627 E678[OVA]
628 E678[OVA]
629 E678[OVA]
630 E678[OVA]
631 E678[OVA]
632 E678[OVA]
633 E678[OVA]
634 E678[OVA]
635 E678[OVA]
636 E678[OVA]
637 E678[OVA]
638 E678[OVA]
639 E678[OVA]
640 E678[OVA]
641 E678[OVA]
642 E678[OVA]
643 E678[OVA]
644 E678[OVA]
645 E678[OVA]
646 E678[OVA]

4-157

ObjectVersion

*Identifier *Index name categoryCode
214 1 Physical Data Model SV-11 Template 4[ArchElem]
215 1 Physical Data Model SV-11 View 1 4[ArchElem]
216 1 CDMVDE01[Entity 1 in SV-11(215)] 5[OBR]
217 1 CDMVDE02[Entity 2 in SV-11(215)] 5[OBR]
218 1 CDMVDE03[Entity 3 in SV-11(215)] 5[OBR]
219 1 CDMVDE04[Entity 4 in SV-11(215)] 5[OBR]
220 1 DER1[Entity 1 to Entity 2] 5[OBR]
221 1 DER2[Entity 1 to Entity 3] 5[OBR]
222 1 DER3[Entity 1 to Entity 4] 5[OBR]
223 1 DER4[Entity 2 to Entity 4] 5[OBR]
315 1 Entity 1 4[ArchElem]
316 1 Entity 2 4[ArchElem]
317 1 Entity 3 4[ArchElem]
318 1 Entity 4 4[ArchElem]
321 1 Attribute 1 for Entity 1 4[ArchElem]
322 1 Attribute 2 for Entity 1 4[ArchElem]
323 1 Attribute 1 for Entity 2 4[ArchElem]
324 1 Attribute 2 for Entity 2 4[ArchElem]
325 1 Attribute 1 for Entity 3 4[ArchElem]
326 1 Attribute 2 for Entity 3 4[ArchElem]
327 1 Attribute 1 for Entity 4 4[ArchElem]
328 1 Attribute 2 for Entity 4 4[ArchElem]
622 1 DER1 from Entity 1 3[OVA]
623 1 DER1 to Entity 2 3[OVA]
624 1 DER2 from Entity 1 3[OVA]
625 1 DER2 to Entity 3 3[OVA]
626 1 DER3 from Entity 1 3[OVA]
627 1 DER3 to Entity 4 3[OVA]
628 1 DER4 from Entity 2 3[OVA]
629 1 DER4 to Entity 4 3[OVA]
630 1 SV-11 View 1 is in SV-11 Template 3[OVA]
631 1 CDMVDE01 is in SV-11 View1[215] 3[OVA]
632 1 Entity 1 is part of CDMVDE01 3[OVA]
633 1 Attribute 1 is part of Entity 1 3[OVA]
634 1 Attribute 2 is part of Entity 1 3[OVA]
635 1 CDMVDE02 is in SV-11[215] 3[OVA]
636 1 Entity 2 is part of CDMVDE02 3[OVA]
637 1 Attribute 1 is part of Entity 2 3[OVA]
638 1 Attribute 2 is part of Entity 2 3[OVA]
639 1 CDMVDE03 is in SV-11[215] 3[OVA]
640 1 Entity 3 is part of CDMVDE03 3[OVA]
641 1 Attribute 1 is part of Entity 3 3[OVA]
642 1 Attribute 2 is part of Entity 3 3[OVA]
643 1 CDMVDE04 is in SV-11[215] 3[OVA]
644 1 Entity 4 is part of CDMVDE04 3[OVA]
645 1 Attribute 1 is part of Entity 4 3[OVA]
646 1 Attribute 2 is part of Entity 4 3[OVA]

4-158

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

622 1 622 1 315 1 999 E133-R-E136
623 1 622 1 316 1 999 E133-R-E136
624 1 623 1 315 1 999 E133-R-E136
625 1 623 1 317 1 999 E133-R-E136
626 1 624 1 315 1 999 E133-R-E136
627 1 624 1 318 1 999 E133-R-E136
628 1 625 1 316 1 999 E133-R-E136
629 1 625 1 318 1 999 E133-R-E136
630 1 215 1 214 1 999 E112-R-E113
631 1 216 1 215 1 999 E113-R-E114
632 1 216 1 315 1 999 E133-R-E114
633 1 321 1 315 1 999 E133-R-E118
634 1 322 1 315 1 999 E133-R-E118
635 1 217 1 215 1 999 E113-R-E114
636 1 217 1 316 1 999 E133-R-E114
637 1 323 1 316 1 999 E133-R-E118
638 1 324 1 316 1 999 E133-R-E118
639 1 218 1 215 1 999 E113-R-E114
640 1 218 1 317 1 999 E133-R-E114
641 1 325 1 317 1 999 E133-R-E118
642 1 326 1 317 1 999 E133-R-E118
643 1 219 1 215 1 999 E113-R-E114
644 1 219 1 318 1 999 E133-R-E114
645 1 327 1 318 1 999 E133-R-E118
646 1 328 1 318 1 999 E133-R-E118

The relationTypeCode values used have the following meanings:

E133-R-E136 = is ordinate of
E133-R-E136 = is subordinate of
E112-R-E113 = is represented in
E113-R-E114 = displays
E133-R-E114 = is displayed in
E133-R-E118 = is described by

4.6.20.4 Net-Centric Requirements
The specification of discovery metadata at the system and service level can be expressed in

CADM v1.5 through DiscoveryMetadata, which is linkable to DiscoveryMetadataDocument,
which is linkable to InformationAsset through the characterization of InformationAssetDocument.
To do that, one needs to set in the respective instance of DiscoveryMetadataDocument and link it
to DiscoveryMetadata in the ObjectVersionAssociation table with the relationTypeCode = E147-R-
E152 (is used to discover) and InformationAssetDocument in the ObjectVersionAssociation table
with the relationTypeCode = E152-R-E217 (may apply to) and set in the respective instance of
InformationAsset and link it to InformationAssetDocument in the ObjectVersionAssociation table
with the relationTypeCode = E215-R-E217 (is cited in).

4-159

4.6.21 CADM v1.5 Support for Technical Standards Profile (TV-1)

4.6.21.1 Product Definition
As stated in DoDAF v1.5 Volume II, the TV-1 collects the various systems standards rules

that implement and sometimes constrain the choices that can be made in the design and
implementation of an architecture.

4.6.21.2 High-Level Description
Figure 4-51 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of a TV-1.

TV-1
consists ofTechnical Standard

Profile

TechnicalStandardProfileElement

InformationTechnologyRequirement

TechnicalService

InformationTechnologyStandard

MessageStandard
ProtocolStandard

TechnicalServiceArea

Implementation
TimeFrame

Figure 4-51: High-Level Depiction of CADM v1.5 Data Structures for TV-1 Representation

The DoDAF architecture product TV-1 is expressed in CADM v1.5 as an instance of
Document. The TV-1 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the TV-1 is built by linking it to one or more instances of
TechnicalStandardProfileElement. The latter can be linked to InformationTechnologyStandard,
Guidance (e.g., InformationTechnologyRequirement, TechnicalGuideline), TechnicalService, and
ImplementationTimeFrame to build the specification of the profile.

4.6.21.3 CADM v1.5 Instantiation
The following instance tables show how the TV-1 product is represented in CADM v1.5. The

example follows Figure 4-52.

4-160

. . .

Service Area Service Standard
Operating System

Software
Engineering Services

User
Interface

Data Management
Data Interchange

Graphics

Client Server
Operations
Object Definition and
Management

Data Management

Window Management

Dialogue Support

Kernel
Shell and Utilities
Programming Languages

Data Interchange
Electronic Data Interchange
Graphics

FIPS Pub 151-1 (POSIX.1)
IEEE P1003.2
FIPS Pub 119 (ADA)

FIPS Pub 158 (X-Window
System)
DoD Human Computer Interface
Style Guide
FIPS Pub 158 (X-Window
System)
Project Standard
FIPS Pub 127-2 (SQL)
FIPS Pub 152 (SGML)
FIPS Pub 161 (EDI)
FIPS Pub 153 (PHIGS)

Figure 4-52: Notional Example of a TV-1 Product

The TV-1 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E679[OBR]
601 E678[OVA]
602 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

125 1 Project X Architecture 4[ArchElem]
126 1 TV-1 4[ArchElem]
127 1 ArchitectureDocument (TV-1 in Program

Architecture[126]
5[OBR]

601 1 Architecture is documented by TV-1 3[OVA]
602 1 TV-1 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

601 1 125 1 127 1 999 E038-R-E045
602 1 126 1 127 1 999 E148-R-E045

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

4-161

Object

objectIdentifier pointerCode
315 E645[TechnicalServiceArea]
316 E645[TechnicalServiceArea]
317 E645[TechnicalServiceArea]
318 E645[TechnicalServiceArea]
319 E645[TechnicalServiceArea]
320 E645[TechnicalServiceArea]
415 E644[TechnicalService]
416 E644[TechnicalService]
417 E644[TechnicalService]
418 E644[TechnicalService]
419 E644[TechnicalService]
420 E644[TechnicalService]
421 E644[TechnicalService]
422 E644[TechnicalService]
423 E644[TechnicalService]
424 E644[TechnicalService]
425 E644[TechnicalService]
515 E260[InformationTechnologyStandard]
516 E260[InformationTechnologyStandard]
517 E260[InformationTechnologyStandard]
518 E260[InformationTechnologyStandard]
519 E260[InformationTechnologyStandard]
520 E260[InformationTechnologyStandard]
521 E260[InformationTechnologyStandard]
522 E260[InformationTechnologyStandard]
523 E260[InformationTechnologyStandard]
524 E260[InformationTechnologyStandard]
525 E260[InformationTechnologyStandard]
701 679 [OBR]
702 679 [OBR]
703 679 [OBR]
801 678 [OVA]
802 678 [OVA]
803 678 [OVA]

ObjectVersion
*Identifier *Index name categoryCode

315 1 Operating System 4[ArchElem]
316 1 Software Engineering Services 4[ArchElem]
317 1 User Interface 4[ArchElem]
318 1 Data Management 4[ArchElem]
319 1 Data Interchange 4[ArchElem]
320 1 Graphics 4[ArchElem]
415 1 Kernel 4[ArchElem]
416 1 Shell and Utilities 4[ArchElem]
417 1 Programming Languages 4[ArchElem]
418 1 Client Server Operations 4[ArchElem]
419 1 Object Definition and Management 4[ArchElem]
420 1 Window Management 4[ArchElem]
421 1 Dialogue Support 4[ArchElem]
422 1 Data Management 4[ArchElem]

4-162

423 1 Data Interchange 4[ArchElem]
424 1 Electonic Data Interchange 4[ArchElem]
425 1 Graphics 4[ArchElem]
515 1 FIPS Pub 151-1 4[ArchElem]
516 1 IEEE P1003.2 4[ArchElem]
517 1 FIPS Pub 119 4[ArchElem]
518 1 FIPS Pub 158 4[ArchElem]

519 1 DoD Human Computer Interface Style
Guide

4[ArchElem]

520 1 FIPS Pub 158 4[ArchElem]
521 1 Project Standard 4[ArchElem]
522 1 FIPS Pub 127-2 4[ArchElem]
523 1 FIPS Pub 152 4[ArchElem]
524 1 FIPS Pub 161 4[ArchElem]

525 1 FIPS Pub 153 4[ArchElem]

701 1 Technical Standard Profile Element 1 5[OBR]

702 1 Technical Standard Profile Element 2 5[OBR]
703 1 Technical Standard Profile Element 3 5[OBR]
801 1 TV-1[126[contains TSPE 1[701] 3[OVA]
802 1 TV-1[126[contains TSPE 2[702] 3[OVA]
803 1 TV-1[126[contains TSPE 3[703] 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
701 1 E649[TSPE]
702 1 E649[TSPE]
703 1 E649[ITSPE]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

801 1 701 1 126 1 999 E648-R-E649
802 1 702 1 126 1 999 E648-R-E649
803 1 703 1 126 1 999 E648-R-E649

The relationTypeCode values used have the following meanings:

E648-R-E649 = comprises
Finally, each TechnicalStandardProfileElement can be linked to the pertinent instances of

TechnicalServiceArea, TechnicalService, and InformationTechnologyStandard. For the purpose of
illustration, one can take an instance of TechnicalService and create a new instance of OVA.

Object
objectIdentifier pointerCode

415 E644[TechnicalService]
901 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
415 1 Kernel 4[ArchElem]
901 1 TechnicalService[415]] toTSPE1[701] 3[OVA]

4-163

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 415 1 701 1 999 E644-R-E649

The relationTypeCode values used have the following meanings:

E644-R-E649 = is the focus of

4.6.21.4 Net-Centric Requirements
The specification of services at the system and service level can be expressed in CADM v1.5

through SoaService, which is linkable to InformationTechnologyStandard through the
characterization of SoaServiceInformationTechnologyStandard. To do that, one needs to set in the
respective instance of SoaServiceInformationTechnologyStandard and link it to SoaService in the
ObjectVersionAssociation table with the relationTypeCode = E563-R-E585 (is used in) and link it
to InformationTechnologyStandard in the ObjectVersionAssociation table with the
relationTypeCode = E260-R-E585 (uses).

4.6.22 CADM v1.5 Support for Technical Standards Forecast (TV-2)

4.6.22.1 Product Definition
As stated in DoDAF v1.5 Volume II, the TV-2 contains expected changes in technology-

related standards and conventions, which are documented in the TV-1 product. The forecast for
evolutionary changes in the standards should be correlated against the time periods as mentioned
in the SV-8 and SV-9 products.

4.6.22.2 High-Level Description
Figure 4-53 shows a high-level conceptual depiction of the CADM v1.5 data structures that

support the description of a TV-2.

4-164

TV-2
consists ofTechnical Standard

Forecast

TechnicalStandardForecastElement

InformationTechnologyRequirement

TechnicalService

InformationTechnologyStandard

MessageStandard
ProtocolStandard

TechnicalServiceArea

Period

Figure 4-53: High-Level Depiction of CADM v1.5 Data Structures for TV-2 Representation

The DoDAF architecture product TV-2 is expressed in CADM v1.5 as an instance of
Document. The TV-2 document can be connected to the appropriate instance of Architecture that
it is part of through the CADM v1.03 entity ArchitectureDocument (modeled as
ObjecByReference).

The actual data content of the TV-2 is built by linking it to one or more instances of
TechnicalStandardForecastElement. The latter can be linked to Period, and TechnicalService,
TechnicalServiceArea to create the applicable standard forecast.

4.6.22.3 CADM v1.5 Instantiation
The following instance tables show how the TV-2 product is represented in CADM v1.5. The

example follows Figure 4-54.

4-165

Operating
System

Kernel Now FIPS PUB
151-1

FIPS PUB
151-2

Shell &
Utilities

Now IEEE 1003.2 FIPS
Addition

Real Time
Extension

Future IEEE 1003.4 FIPS
Addition

Program-
ming

Program-
ming
Language

Now FIPS PUB
119 - Ada

FIPS PUB
119-1
Ada9X

CASE
Tools &
Environ-
ment

Now ECMA Spec
149 - PCTE

User
Interface . . .
Data
Manage-
ment

Data-
Diction-
ary/Direct
-ory

Now FIPS PUB
156 - IRDS

Data
Manage-
ment

Now FIPS PUB
127-1-SQL

FIPS PUB
127-2-
SQL+

FIPS PUB
127-3-
SQL++

. . .

Service
Areas Service Status As of 6/93

Expected
by 12/93

Expected
by 12/94

Expected
by 12/94 Comments

Figure 4-54: Notional Example of a TV-2 Product

The TV-2 as an instance of Document and its relation to an appropriate instance of
Architecture is shown below.

Object
objectIdentifier pointerCode

125 E038[Architecture]
126 E148[Document]
127 E679[OBR]
601 E678[OVA]
602 E678[OVA]

ObjectVersion
*Identifier *Index name categoryCode

125 1 Project X Architecture 4[ArchElem]
126 1 TV-2 4[ArchElem]
127 1 ArchitectureDocument (TV-2 in Program

Architecture[126]
5[OBR]

601 1 Architecture is documented by TV-2 3[OVA]
602 1 TV-1 documents Architecture 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
127 1 E045[ArchitectureDocument]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

601 1 125 1 127 1 999 E038-R-E045
602 1 126 1 127 1 999 E148-R-E045

4-166

The relationTypeCode values used have the following meanings:

E038-R-E045 = is recorded in
E148-R-E045 = records

The content of the TV-2 is created by linking the appropriate instances of Period,
TechnicalServiceArea, TechnicalService and the applicable standards to instances of
ObjectByReference corresponding to the CADM v1.03 entity
TechnicalStandardForecastElement.

Object
objectIdentifier pointerCode

215 E467[Period]
216 E467[Period]
217 E467[Period]
218 E467[Period]
219 E467[Period]
220 E467[Period]
701 647 [OBR]
702 647 [OBR]
703 647 [OBR]
704 647 [OBR]
705 647 [OBR]
706 647 [OBR]
707 647 [OBR]
708 647 [OBR]
315 E645[TechnicalServiceArea]
316 E645[TechnicalServiceArea]
317 E645[TechnicalServiceArea]
318 E645[TechnicalServiceArea]
319 E645[TechnicalServiceArea]
320 E645[TechnicalServiceArea]
321 E645[TechnicalServiceArea]
415 E644[TechnicalService]
416 E644[TechnicalService]
417 E644[TechnicalService]
418 E644[TechnicalService]
419 E644[TechnicalService]
420 E644[TechnicalService]
421 E644[TechnicalService]
422 E644[TechnicalService]
423 E644[TechnicalService]
424 E644[TechnicalService]
425 E644[TechnicalService]
515 E260[InformationTechnologyStandard]
516 E260[InformationTechnologyStandard]
517 E260[InformationTechnologyStandard]
518 E260[InformationTechnologyStandard]
519 E260[InformationTechnologyStandard]
520 E260[InformationTechnologyStandard]
521 E260[InformationTechnologyStandard]
522 E260[InformationTechnologyStandard]
523 E260[InformationTechnologyStandard]
524 E260[InformationTechnologyStandard]
525 E260[InformationTechnologyStandard]

4-167

objectIdentifier pointerCode
526 E260[InformationTechnologyStandard]
527 E260[InformationTechnologyStandard]
528 E260[InformationTechnologyStandard]
529 E260[InformationTechnologyStandard]
801 678 [OVA]
802 678 [OVA]
803 678 [OVA]
804 678 [OVA]
805 678 [OVA]
806 678 [OVA]
807 678 [OVA]
808 678 [OVA]

ObjectVersion
*Identifier *Index name categoryCode

215 1 Base 4[ArchElem]
216 1 Future 4[ArchElem]
217 1 Future 4[ArchElem]
218 1 Future 4[ArchElem]
219 1 Long Range 4[ArchElem]
220 1 Long Range 4[ArchElem]
701 1 Technical Standard Forecast Element 1 5[OBR]

702 1 Technical Standard Forecast Element 2 5[OBR]
703 1 Technical Standard Forecast Element 3 5[OBR]
704 1 Technical Standard Forecast Element 4 5[OBR]

705 1 Technical Standard Forecast Element 5 5[OBR]
706 1 Technical Standard Forecast Element 6 5[OBR]
707 1 Technical Standard Forecast Element 7 5[OBR]

708 1 Technical Standard Forecast Element 8 5[OBR]
315 1 Information Processing 4[ArchElem]
316 1 Information Transfer 4[ArchElem]
317 1 Info Modeling, Metadata, and Info

Exchange
4[ArchElem]

318 1 Human-Computer Interface 4[ArchElem]
319 1 Information Security 4[ArchElem]
320 1 Combat Support Information 4[ArchElem]
321 1 Sensor Exploitation 4[ArchElem]
415 1 1 Base-5 4[ArchElem]
416 1 10 BASE -F 4[ArchElem]
417 1 10 Base-2 4[ArchElem]
418 1 10 Base-5 4[ArchElem]
419 1 10 Base-Broad 4[ArchElem]
420 1 10 Base-FL 4[ArchElem]
421 1 10 Base-T 4[ArchElem]
422 1 10 BROAD 36 4[ArchElem]
423 1 10.005MHz-10.100MHz 4[ArchElem]
424 1 100 BASE-F 4[ArchElem]
425 1 100 Base-FX 4[ArchElem]
515 1 FIPS Pub 151-1 4[ArchElem]
516 1 IEEE P1003.2 4[ArchElem]
517 1 FIPS Pub 119 4[ArchElem]
518 1 FIPS Pub 158 4[ArchElem]

4-168

519 1 DoD Human Computer Interface Style
Guide

4[ArchElem]

520 1 Project Standard 4[ArchElem]
521 1 FIPS Pub 127-2 4[ArchElem]
522 1 FIPS Pub 152 4[ArchElem]
523 1 FIPS Pub 161 4[ArchElem]
524 1 FIPS Pub 153 4[ArchElem]
525 1 FIPS Pub 151-2 4[ArchElem]
526 1 IEEE P1003.2 Add’n 4[ArchElem]
527 1 IEEE P1003.4 4[ArchElem]
528 1 IEEE P1003.4 Add’n 4[ArchElem]
529 1 FIPS 119, Ada9X 4[ArchElem]
801 1 TV-2[126[contains TSFE 1[701] 3[OVA]
802 1 TV-2[126[contains TSFE 2[702] 3[OVA]
803 1 TV-2[126[contains TSFE 3[703] 3[OVA]
804 1 TV-2[126[contains TSFE 1[704] 3[OVA]
805 1 TV-2[126[contains TSFE 2[705] 3[OVA]
806 1 TV-2[126[contains TSFE 3[706] 3[OVA]
807 1 TV-2[126[contains TSFE 2[707] 3[OVA]
808 1 TV-2[126[contains TSFE 3[708] 3[OVA]

ObjectByReference

*Identifier *Index categoryCode
701 1 E647[TSPE Matrix Element]
702 1 E647[TSPE Matrix Element]
703 1 E647[ITSPE Matrix Element]
704 1 E647[TSPE Matrix Element]
705 1 E647[TSPE Matrix Element]
706 1 E647[ITSPE Matrix Element]
707 1 E647[TSPE Matrix Element]
708 1 E647[ITSPE Matrix Element]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

801 1 701 1 126 1 999 E646-R-E647
802 1 702 1 126 1 999 E646-R-E647
803 1 703 1 126 1 999 E646-R-E647
804 1 704 1 126 1 999 E646-R-E647
805 1 705 1 126 1 999 E646-R-E647

806 1 706 1 126 1 999 E646-R-E647
807 1 707 1 126 1 999 E646-R-E647
808 1 708 1 126 1 999 E646-R-E647

The relationTypeCode values used have the following meanings:

E646-R-E647= predicts

Finally, each TechnicalStandardForecastElement can be linked to the pertinent instances of
TechnicalService, Timeframe, Period, and InformationTechnologyStandard. For the purpose of
illustration, one can take an instance of TechnicalService and create a new instance of OVA.

4-169

Object
objectIdentifier pointerCode

415 E644[TechnicalService]
901 E678[OVA]

ObjectVersion

*Identifier *Index name categoryCode
415 1 1-Base 5 4[ArchElem]
901 1 TechnicalService[415]] toTSFE1[701] 3[OVA]

ObjectVersionAssociation
*Identifier *Index subject

OV
Identifier

subject
OV

Index

object
OV

Identifier

object
OV

Index

category
Code

relationType
Code

901 1 701 1 415 1 999 E644-R-E647

The relationTypeCode values used have the following meanings:

E644-R-E647 = is referenced in

4.6.22.4 Net-Centric Requirements
Since the purpose of the TV-2 is to identify critical technology standards, their fragility, and

the impact of these standards on the future development and maintainability of the architecture
and its constituent elements, it would subsequently include any required services or other
technologies that support NCO. Accordingly, the CADM support for the TV-2 is well suited to
support the NCE.

A-1

ANNEX A
GLOSSARY

A&I Architectures and Interoperability

A&ID Architectures and Interoperability Directorate

ACCB Architecture Configuration Control Board

AIP Architecture Interoperability Program

ASD(C3I) Assistant Secretary of Defense (Command, Control, Communications,
and Intelligence)

AT&L Acquisition, Technology, and Logistics

AV All View

AWG Architecture Working Group

BRM Business Reference Model

C/S/As Commands, Services, and Agencies

C2 Command and Control

C3 Command, Control, Communications

C3 Command, Control, and Consultation

C3I Command, Control, Communications, and Intelligence

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance

CADM Core Architecture Data Model

CES Core Enterprise Services

CIO Chief Information Officer

CJCS Chairman Joint Chiefs of Staff

CJCSI Chairman Joint Chiefs of Staff Instruction

COAL Common Operational Activities List

COCOM Combatant Command

COI Community of Interest

A-2

COTS Commercial, Off-the-Shelf

CRD Capstone Requirements Document

CSFL Common System Function List

DARS DoD Architecture Registry System

DBMS Database Management System

DDDS DoD Data Dictionary System

DDL Data Definition Language

DDMS DoD Discovery Metadata Specification

DISR DoD IT Standards Registry

DML Data Manipulation Language

DMR DoD Metadata Registry

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DoDD DoD Directive

DoDI DoD Instruction

DSS Decision Support System

EA Enterprise Architecture

EID Enterprise Identifier

FIPS Federal Information Processing Standard

FJAWG Federated Joint Architecture Working Group

GIG Global Information Grid

GOTS Government, Off-the-shelf

IDEF0 Integrated Definition for Activity Modeling

IDEF1X Integrated Definition for Data Modeling

IER Information Exchange Requirement

A-3

IT Information Technology

ITMRA Information Technology Management Reform Act - Clinger-Cohen Act of 1996

JCA Joint Capability Areas

JCS Joint Chiefs of Staff

JMA Joint Mission Area

JTF Joint Task Force

M&S Modeling and Simulation

MCP Mission Capability Package

MS Microsoft

NATO North Atlantic Treaty Organization

NCDS Net-Centric Data Strategy

NCE Net-Centric Environment

NCES Net-Centric Enterprise Services

NCO Net-Centric Operations

NCOE Net-Centric Operating Environment

NCW Net-Centric Warfare

NII Networks and Information Integration

NRO National Reconnaissance Office

OASD Office of the Assistant Secretary of Defense

OMG Object Management Group

OSD Office of the Secretary of Defense

OV Operational View

PM Program Manager

RDBMS Relational Database Management System

SECDEF Secretary of Defense

A-4

SOA Service Oriented Architecture

SME Subject Matter Expert

SOCOM Southern Command

SQL Structured Query Language

SV Systems and Services View

TV Technical Standards View

UJTL Universal Joint Task List

UML Unified Modeling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

B-1

ANNEX B
DICTIONARY OF TERMS

The terms included here are terms that are used in some restrictive or special sense in this
document. Certain terms are not defined (e.g., event, function) because they have been left as
primitives, and the ordinary dictionary usage should be assumed. Where the source for a
definition is known, the reference has been provided in parentheses following the definition.
Terms that are being used by both the Framework and the C4ISR CADM are marked with an
asterisk.

Access Control Level

A restriction on the visibility/accessibility of data and metadata. Public
access level allows visibility/accessibility of artifact metadata and data
to all authenticated users. Protected access allows visibility of artifact
metadata to all authenticated users, but restricts data access to
designated users. Private access level restricts visibility of metadata and
data access to designated users.

Activity

As used in the Framework, an activity is an action performed in
conducting the business of an enterprise. It is a general term that does
not imply a placement in a hierarchy (that is, it could be a process or a
task as defined in other documents and it could be at any level of the
hierarchy of the OV-5). It is used to portray operational actions, not
hardware/software system functions. (DoDAF)

Analysis

a : A prescribed approach to developing alternative solutions to a
defined problem b : In the JCIDS Overlay, for example, the analyses
include, but are certainly not limited to, FAA, FNA, FSA, Gap Analysis,
Risk Analysis, and so on.

Architecture Artifact

An aggregation of architecture data, structured or unstructured.
Examples include integrated architectures or DoDAF views in any
format (e.g., .ppt, .doc, .xls, .jpg, .xml), tables of data records, or
individual or groups of records representing architecture object
instances. An Architecture Artifact is a type of Data Asset.

Attribute* A quantitative or qualitative characteristic of an element or its actions.
(CJCSI 3170.01E, 11 MAY 2005)

Authoritative Source
A designation given to a data source by an appropriate authority
indicating that the source data is definitive and preferred or mandated
for use.

Certification Affirmation by an appropriate authority (e.g., DoD CIO) of compliance
with specified program control elements.

Classification Taxonomy A set of upper tier classification categories that are managed at the DoD
enterprise level, identified as authoritative, and mandated for use.

Communications Medium* A means of data transmission.

B-2

Community of Interest

Collaborative groups of users who must exchange information in pursuit
of their shared goals, interests, missions, or business processes and who
therefore must have shared vocabulary for the information they
exchange. (DoD NCDS, 9 May 2003)

Configuration Management

Configuration management, applied over the life cycle of a product,
provides visibility and control of its performance, functional, and
physical attributes. Configuration management verifies that a product
performs as intended, and is identified and documented in sufficient
detail to support its projected life cycle (e.g., fabrication or production,
operation, maintenance, repair, replacement, and disposal). (EIA 649,
National Consensus Standard for Configuration Management)

Data
A representation of individual facts, concepts, or instructions in a
manner suitable for communication, interpretation, or processing by
humans or by automatic means. (IEEE 610.12)

Data Asset

Data asset refers to any entity that is composed of data. For example, a
database is a data asset that comprises data records. In this document,
“data asset” means system or application output files, databases,
documents, or web pages. “Data asset” also includes services that may
be provided to access data from an application. For example, a service
that returns individual records from a database would be a data asset.
Similarly, a website that returns data in response to specific queries
(e.g., weather.com) would be a data asset. (DoD NCDS, 9 May 2003)

Data Element

A basic unit of data having a meaning and distinct units and values.
(Derived from 8320.1) A uniquely named and defined component of a
data definition; a data “cell” into which data items (actual values) can be
placed; the lowest level of physical representation of data. (Derived
from IEEE 610.5)

Data-Entity* The representation of a set of people, objects, places, events or ideas that
share the same characteristic relationships. (DDDS 4362 (A))

Data Model
A representation of the data elements pertinent to an architecture, often
including the relationships among the elements and their attributes or
characteristics. (DoDAF)

Decision Process

a : A business process developed and employed by management to guide
change in an organization toward specific goals b : in the DoD, the
seminal transformation processes include: JCIDS, DAS, PPBE, Portfolio
Management and net-centric transformation

Dependency Types are: “Is equivalent to”, “Is part of”, “Supports”, or “Replaces”.

Discovery Metadata Metadata elements identified for use in searching and locating specific
data asset content.

DoDAF Views a: The 26 architecture products specifically identified in DoDAF v1.0 b:

B-3

the views fall into four categories: OVs (9), SVs (13), TVs (2) and AVs
(2).

Executable A simulation or other analytical assist which performs tasks defined in a
transformation process according to encoded instructions

Federated Architecture

A framework for EA development, maintenance and use that links,
locates, and aggregates disparate architectures and architecture
information via information exchange standards to deliver a seamless
outward appearance to users. A federated architecture approach
recognizes the uniqueness and specific purpose of disparate
architectures, and allows for their autonomy and local governance, while
enabling the enterprise to benefit from their content.

Format The arrangement, order, or layout of data/information. (Derived from
IEEE 610.5)

Global Information Grid

The globally interconnected, end-to-end set of information capabilities,
associated processes, and personnel for collecting, processing, storing,
disseminating and managing information on demand to warfighters,
policy makers, and support personnel. The GIG includes all owned and
leased communications and computing systems and services, software
(including applications), data, security services, and other associated
services necessary to achieve Information Superiority. It also includes
National Security Systems as defined in section 5142 of the Clinger-
Cohen Act of 1996 (reference (b)). The GIG supports all Department of
Defense, National Security, and related Intelligence Community
missions and functions (strategic, operational, tactical, and business), in
war and in peace. The GIG provides capabilities from all operating
locations (bases, posts, camps, stations, facilities, mobile platforms, and
deployed sites). The GIG provides interfaces to coalition, allied, and
non-DoD users and systems. (DoDD 8100.1, 19 September 2002)

Information Product

a : A document or report that is specifically defined or called out in a
DoD policy or instruction; b : In the case of the JCIDS, key information
products include JOC, JIC, JCD, ICD, CDD, CPD, PIA, DCR and other
JCIDS documents as well as DoDAF products such as the OV1, OV3,
and OV5.

Integrated Architecture

 An architecture consisting of multiple views or perspectives
(Operational View, Systems View, and Technical Standards View) that
facilitates integration and promotes interoperability across family of
systems and system of systems and compatibility among related
architectures (DoDD 4630.5)

An architecture description that has integrated Operational, Systems, and
Technical Standards Views with common points of reference linking the
Operational View and the Systems View and also linking the Systems
View and the Technical Standards View. An architecture description is
defined to be an integrated architecture when products and their
constituent architecture data elements are developed such that
architecture data elements defined in one view are the same (i.e., same

B-4

names, definitions, and values) as architecture data elements referenced
in another view. (DoDAF)

Interoperable Architectures

a: ability of one architecture to use the parts of another architecture b:
The key to “interoperable architectures” (variously called: federations,
communities, systems of systems, portfolios, capabilities, and so on) is
ensuring that the same metadata constructs are shared by member
architectures.

Metadata
Metadata is descriptive information about the meaning of other data.
Metadata can be provided in many forms, including XML. (DoD NCDS,
9 May 2003)

Metadata Catalog

Metadata Catalog is a system that contains the instanc es of metadata
associated with individual data assets. Typically, a metadata catalog is a
software application that uses a database to store and search records that
describe such items as documents, images, and videos. Search portals
and applications can use metadata catalogs to locate the data assets that
are relevant to their queries. (DoD NCDS, 9 May 2003)

Net-Centric Environment

A framework for full human and technical connectivity and
interoperability that allows all DOD users and mission partners to share
the information they need, when they need it, in a form they can
understand and act on with confidence; and protects information from
those who should not have it. (NCE Joint Functional Concept, 7 April
2005)

Net-Centric Operating
Environment

The exploitation of the human and technical networking of all elements
of an appropriately trained joint force by fully integrating collective
capabilities, awareness, knowledge, experience, and superior
decisionmaking to achieve a high level of agility and effectiveness in
dispersed, decentralized, dynamic and uncertain operational
environments. (NCE Joint Functional Concept, 7 April 2005)

Net-Centric Operations

The exploitation of the human and technical networking of all elements
of an appropriately trained joint force by fully integrating collective
capabilities, awareness, knowledge, experience, and superior decision
making to achieve a high level of agility and effectiveness in dispersed,
decentralized, dynamic and uncertain operational environments. (NCE
Joint Functional Concept, 7 April 2005)

Operational Activity Model

A representation of the actions performed in conducting the business of
an enterprise. The model is usually hierarchically decomposed into its
component actions, and usually portrays the flow of information (and
sometimes physical objects) between the component actions. In the
Framework, the activity model portrays operational actions, not
hardware/software system functions. (DoDAF)

Policy Map
a: A graphical depiction of the lexicon, logic, activities, and deliverable
information products expressed in a set of policies and procedures (such
as JCIDS or PPBE) usually in the form of a poster or plot; b: A primary

B-5

tool for disambiguating the lexicon and logic within and among specific
sets of policies and procedures and for understanding changes as these
policy sets evolve through time

Protocol

a: According to Webster, a protocol is “a set of conventions governing
the treatment and especially the formatting of data.” DoDAF v2.0 has
three protocol structures: Overlay Protocol, mini-protocol, DoDAF v2.0
Architecture Protocol. b : A protocol is created by modeling the Overlay
policy and processes. This model is depicted in the Policy Map.

PSA

Principal Staff Assistants (Office of the Secretary of Defense (OSD)
officials holding Presidential appointments, Assistants to the Secretary
of Defense (SECDEF), and OSD Directors or equivalents who report
directly to the Secretary or Deputy Secretary of Defense. (DoDI
5025.1))

Reference Data

Common sets of terms, taxonomies and taxonomy element definitions
that are standardized within a COI. Reference data is used within COIs
to provide unambiguous reference definitions for data element instances
used within architecture descriptions.

Reference Data Set

Instances of entities or objects that are designated as an authoritative
reference and preferred or mandated for use. Reference Data Sets are
defined and configuration managed by an Authoritative Source.
Examples include the list of UJTLS, Common System Functions List
(CSFL), Common Operational Activities List (COAL), Common
Information Elements List (CIEL), etc.

Shared Space

Shared space is a mechanism that provides storage of and access to data
for users within a bounded network space. Enterprise-shared space refers
to a store of data that is accessible by all users within or across security
domains on the GIG. A shared space provides virtual or physical access
to any number of data assets (e.g., catalogs, web sites, registries,
document storage, and databases). As described in this Strategy, any
user, system, or application that posts data uses shared space. (DoD
NCDS, 9 May 2003)

Structural Dependency An association between data elements.

Taxonomy a : A predefined classification scheme b: set of allowable values for
variables described in an analytic task

Web Services

Web services are self-describing, self-contained, modular units of
software application logic that provide defined business functionality.
Web services are consumable software services that typically include
some combination of business logic and data. Web services can be
aggregated to establish a larger workflow or business transaction.
Inherently, the architectural components of web services support
messaging, service descriptions, registries, and loosely coupled
interoperability. (DoD NCDS, 9 May 2003)

B-6

* Definitions shared between the Framework and CADM documents.

Functional Area* A major area of related activity (e.g., Ballistic Missile Defense,
Logistics, or C2 support). (DDDS 4198(A))

Information The refinement of data through known conventions and context for
purposes of imparting knowledge.

Information Exchange
Information that is passed from one operational node to another.
Associated with an information exchange are such performance
attributes as size, throughput, timeliness, quality, and quantity values.

Information Exchange
Requirement*

A requirement for information that is exchanged between nodes.
Performance attributes such as size, throughput, timeliness, quality, and
quantity values are associated with an IER.

Link A representation of the physical realization of connectivity between
system nodes.

Metadata data that defines and describes other data (ISO/IEC 11179)

Mission Area*
The general class to which an operational mission belongs. (DDDS
2305(A))

Note: Within a class, the missions have common objectives.

Mission*
An objective together with the purpose of the intended action.
(Extension of DDDS 1(A))

Note: Multiple tasks accomplish a mission. (SPAWAR)

Needline* A requirement that is the logical expression of the need to transfer
information among nodes.

Network* The joining of two or more nodes for a specific purpose.

Node* A representation of an element of architecture that produces, consumes,
or processes data.

Operational Node A node that performs a role or mission.

Organization* An administrative structure with a mission. (DDDS 345 (A))

Platform* A physical structure that hosts systems or systems components.

Process
A group of logically related activities required to execute a specific task
or group of tasks. (Army Systems Architecture Framework)

Note: Multiple activities make up a process. (SPAWAR)

Requirement*
A need or demand.

(DDDS 12451/1 (D))

B-7

Role A function or position. (Webster’s)

Rule Statement that defines or constrains some aspect of the enterprise.

Service
A distinct part of the functionality that is provided by a system on one
side of an interface to a system on the other side of an interface.
(Derived from IEEE 1003.0)

System A collection of components organized to accomplish a specific function
or set of functions. (IEEE 610.12)

System Function* A data transform that supports the automation of activities or exchange
requirements.

Systems Node
A node with the identification and allocation of resources (e.g., people,
platforms, facilities, or systems) required to implement specific roles
and missions.

Task
An action or activity (derived from an analysis of the mission and
concept of operations) assigned to an individual or organization to
provide a capability. (UJTL, CJCSM 3500.04D, 2005)

C-1

ANNEX C
Dictionary of UML Terms

The terms included here are UML terms that are used in Volume III, Appendix F of this
document. They convey some restrictive or special sense in this section. The sources for these
definitions are [Booch et al., 1999] and [Rumbaugh, et al., 1999].

Abstraction

1. The act of identifying the essential characteristics of a thing that distinguish it
from all other kinds of things. Abstraction involves looking for similarities across
sets of things by focusing on their essential common characteristics. An abstraction
always involves the perspective and purpose of the viewer; different purposes result
in different abstractions for the same things. All modeling involves abstraction,
often at many levels for various purposes.

2. A kind of dependency that relates two elements that represent the same concept
at different abstraction levels.

Adornments Textual or graphical items that are added to an element’s basic notation and are
used to visualize details from the element’s specification.

Artifact
A piece of information that is used or produced by a software development process,
such as an external document, or a work product. An artifact can be a model,
description, or software.

Association The semantic relationship between two or more classifiers that involves connections
among their instances.

Attribute An attribute is a named property of a class that describes a range of values that
instances of the property may hold.

Building
Blocks

There are three kinds of building blocks in UML: Things, Relationships, and
diagrams.

Class A class is a description of a set of objects that share the same attributes, operations,
relationships, and semantics.

Component A physical, replaceable part of a system that packages implementation and
conforms to and provides the realization of a set of interfaces.

Constraint A semantic condition or restriction represented as an expression. Certain constraints
are predefined in the UML, others may be defined by modelers.

Constraint An extension of the semantics of a UML element, allowing you to add new rules or
modify existing ones.

Dependency A relationship between two elements in which a change to one element (the
supplier) may affect or supply information needed by the other element (the client).

Deployment
Diagram

A network of node symbols connected by paths showing communication
associations. UML Deployment Diagrams consist of physical nodes and
dependency and association relationships among the nodes.

C-2

Derivation
A relationship between an element and another element that can be computed from
it. Derivation is modeled as a stereotype of an abstraction dependency with the
keyword Derive.

Derived
Element

A [sic] element that can be computed from other elements and is included for clarity
or for design purposes even though it adds no semantic information.

Diagram
A graphical presentation of a collection of model elements, most often rendered as a
connected graph of arcs (relationships) and vertices (other model elements). A
diagram is contained within a package.

Element An atomic constituent of a model.

Generalization A taxonomic relationship between a more general element and a more specific
element.

Instance An individual entity with its own identity and value.

Model A semantically complete abstraction of a system.

Node
A node is a run-time physical object that represents a computational resource,
which generally has at least a memory and often processing capability. Run-time
objects and run-time component instances may reside on nodes.

Notes

Notes may contain any combination of text or graphics. A note that renders a
comment has no semantic impact, it does not alter the meaning of the model to
which it is attached. Notes are used to specify things like requirements,
observations, reviews, and explanations, in addition to rendering constraints.

OCL Object Constraint Language, a text language for specifying constraints and queries.

Operations
An operation is the implementation of a service that can be requested from any
object of the class to affect behavior.

Package
A package is a general-purpose mechanism for organizing elements into groups.
Graphically, a package is rendered as a tabbed folder.

Realization The relationship between a specification and its implementation; an indication of
the inheritance of behavior without the inheritance of structure.

Refinement A relationship that represents a fuller specification of something that has already
been specified at a certain level of detail or at a different semantic level.

Relationships There are four kinds of relationships in the UML: Dependency, Association,
Generalization, Realization.

Stereotype An extension of the vocabulary of the UML, which allows you to create new kinds

C-3

of building blocks that are derived from existing ones but are specific to your
problem. A stereotype is not the same as a parent class in a parent/child
generalization relationship (e.g., parent class polygon, and child class rectangle).
Rather, a stereotype is like a meta-type, because each one creates the equivalent of a
new class in the UML’s meta-model.

Tagged values
Every thing in the UML has its own set of properties: classes have names,
attributes, and operations, and so on. With stereotypes you can add new things to
the UML; with tagged values, you can add new properties.

Things

The abstractions that are first-class citizens in a model; relationships tie these things
together; diagrams group interesting collections of things.

There are four kinds of things in the UML: Structural things, behavioral things,
grouping things, and annotational things.

Trace

A dependency that indicates a historical development process or other extra-model
relationship between two elements that represent the same concept without specific
rules for deriving one from the other. This is the least specific kind of dependency,
and it has minimal semantics. It is mostly of use as a reminder for human thought
during development.

D-1

ANNEX D
REFERENCES

Reference Citation

[All-CADM, 2003a]

All-DoD Core Architecture Data Model (All-CADM) for DoD Architecture
Framework v1.0, Volume 1, Overview Description, Office of the DoD Chief
Information Officer, Draft (In Preparation), February 2003,
UNCLASSIFIED.

[All-CADM, 2003b]

All-DoD Core Architecture Data Model (All-CADM) for DoD Architecture
Framework v1.0, Volume 2, Technical Specification, Office of the DoD
Chief Information Officer, Draft (In Preparation), February 2003,
UNCLASSIFIED.

[All-CADM, 2003c]
All-DoD Core Architecture Data Model (All-CADM) for DoD Architecture
Framework v1.0, Volume 3-Annexes, Office of the DoD Chief Information
Officer, Draft (In Preparation), February 2003, UNCLASSIFIED.

[ASD (C3I) 1998]

C4ISR Core Architecture Data Model (CADM) v1.5 (CADM v2.0), Assistant
Secretary of Defense for Command, Control, and Communications,
Architecture and Interoperability Directorate, 1 December 1998,
UNCLASSIFIED.

[ASD, 1999]
Assistant Secretary of Defense (Command, Control, Computers, and
Intelligence), Memorandum, Subject: Global Information Grid,
22 September 1999.

[ASN(RDA)CHENG,
2002]

ASN(RDA)CHENG MCP Strike Architecture Team, PROS Architecture
Assessment Report, October 2002.

[Bienvenu et al., 2000]
Bienvenu, M., I. Shin, and A. Levis, C4ISR Architectures III: An Object-
Oriented Approach for Architecture Design, Systems Engineering, Vol. 3,
No. 4, Fall 2000.

[Booch et al., 1999]
Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley Publishing Company, Reading MA, April
1999.

[C4ISR AWG, 1998] C4ISR Architecture Working Group, Levels of Information System
Interoperability (LISI), 30 March 1998.

[CJCS, 1994] Chairman, Joint Chiefs of Staff, DoD Dictionary of Military and Associated
Terms, Joint Publication 1-02, 23 March 1994.

[CJCSM 3500.04D] Universal Joint Task List (UJTL), published by Chairman, Joint Chiefs of
Staff, 1 August 2005.

[DEB, 2000] Defense Electronic Business, Joint Electronic Commerce Architecture,
2000.

D-2

Reference Citation

[DDMS, 2003] DoD Deputy Chief Information Officer, 29 July 2005, “DoD Discovery
Metadata Specification (DDMS) v1.3”

[DeMarco 1979] DeMarco, Tom, Structured Analysis and Systems Specification, Prentice-
Hall, Englewood Cliffs, New Jersey, 1979.

[Department of the Air
Force, 2000]

Department of The Air Force, Air Force Instruction 33-124, Enterprise
Information Technology Architectures, 1 May 2000.

[Department of the
Navy, undated]

Department of the Navy Chief Information Officer, Architecture
Development Process Model, Online, Available: www.doncio.navy.mil,
undated.

[Department of the
Treasury, 2000] Department of the Treasury Chief Information Officers.

[DISA, 2000] Defense Information Systems Agency, Joint Technical Architecture, Version
3.1, 31 March 2000.

[DISC4, 1998]
Director for Information Systems, Command, Control, Communications and
Computers (DSC4), Army Enterprise Architecture Guidance Document,
Version 1.1, 23 December 1998.

[DoD JP-1-02] Department of Defense Dictionary of Military and Associated Terms, Joint
Publication, August 2002.

[DoD, 2001] Interim Regulation 5000.2-R, 4 January 2001.

[FIPS 183 1993]
Integration Definition for Function Modeling (IDEF0), Federal Information
Processing Standards (FIPS) Publication 183,
21 December 1993.

[FIPS 184 1993]
Integration Definition for Data Modeling (IDEF1X), Federal Information
Processing Standards (FIPS) Publication 184
21 December 1993.

[HARLEY 1987a] Harel, D., Statecharts: A visual Formalism for complex systems, The Science
of Computer Programming, 1987, 8, pp. 231-274.

[HARLEY 1987b]
Harel, D., A. Pnueli, J.P. Schmidt, and R. Sherman, On The Formal
Semantics of Statecharts, Proceedings, Second IEEE Symposium, Logic
Comput Sci, Dorset House, New York, 1987, pp. 54-64.

[IEEE Std 1471-2000]
IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems, The Institute of Electrical and Electronics Engineers, Inc.,
3 Park Avenue, New York, NY, 2000.

[IEEE, 1990] Institute of Electrical and Electronics Engineers, Inc., IEEE Standard

D-3

Reference Citation

Glossary of Software Engineering Terminology, IEEE STD 610.12-1990,
Piscataway, NJ, 1990.

[ITMRA, 1996] Information Technology Management Report Act (Clinger-Cohen Act of
1996).

[NATO, 2000] NATO C3 Board, Architecture Framework for NATO C3 Systems (NC3S),
2 October 2000.

[NCDS, 2003]
“DoD Net-Centric Data Strategy”, Memorandum, 9 May 2003,
http://www.defenselink.mil/nii/org/cio/doc/Net-Centric-Data-Strategy-
2003-05-092.pdf.

[NIST, 1993(1)]
National Institute of Standards and Technology, Integration Definition for
Function Modeling (IDEF0), FIPS PUB 183, Gaithersburg, MD, 21
December 1993.

[NIST, 1993(2)]
National Institute of Standards and Technology, Integration Definition for
Information Modeling (IDEF1X), FIPS PUB 184, Gaithersburg, MD,
21 December 1993.

[NRO, 2001] National Reconnaissance Office, National Reconnaissance Office
Architecture Framework (DRAFT), Version 0.9, May 2001.

[OMB, 2000] Office of Management and Budget, Circular A-130: Management of Federal
Information Resources, 30 November 2000.

[OMG, 1998]
Object Management Group (OMG), UML 1998, Unified Modeling
Language Specification, Framingham, Mass., Internet: http://www.omg.org,
1998.

[OMG, 2000]
Object Management Group, UML Primer 2000, “What Is OMG-UML and
Why Is It Important?,” Framingham, Mass., Internet:
http://www.omg.org/news/pr97/umlprimer.html, 2000.

[USD(A&T),
ASD(C3I), J6, 1998]

Under Secretary of Defense (Acquisition and Technology), Assistant
Secretary of Defense (Command, Control, and Communications), and Joint
Staff/J6 Memorandum, Subject: Strategic Direction for a DoD Architecture
Framework, 23 February 1998.

[Yourdon 1989] Yourdon, Edward., Modern Structured Analysis, ISBN 0-13-598624-9,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[Zachman, 1987] Zachman, J.A., A Framework for Information Systems Architecture, IBM
Systems Journal, 26(3): 276-291, 1987.

